Research Article
BibTex RIS Cite

Some Aspects on a Special Type of $(\alpha,\beta )$-metric

Year 2023, Volume: 16 Issue: 1, 295 - 303, 30.04.2023
https://doi.org/10.36890/iejg.1265041

Abstract

The aim of this paper is twofold. Firstly, we will investigate the link between the condition for the functions $\phi(s)$ from $(\alpha, \beta)$-metrics of Douglas type to be self-concordant and k-self concordant, and the other objective of the paper will be to continue to investigate the recently new introduced $(\alpha, \beta)$-metric ([17]):
$$
F(\alpha,\beta)=\frac{\beta^{2}}{\alpha}+\beta+a \alpha
$$
where $\alpha=\sqrt{a_{ij}y^{i}y^{j}}$ is a Riemannian metric; $\beta=b_{i}y^{i}$ is a 1-form, and $a\in \left(\frac{1}{4},+\infty\right)$ is a real positive scalar. This kind of metric can be expressed as follows: $F(\alpha,\beta)=\alpha\cdot \phi(s)$, where $\phi(s)=s^{2}+s+a$.
In this paper we will study some important results in respect with the above mentioned $(\alpha, \beta)$-metric such as: the Kropina change for this metric, the Main Scalar for this metric and also we will analyze how the condition to be self-concordant and k-self-concordant for the function $\phi(s)$, can be linked with the condition for the metric $F$ to be of Douglas type.

self-concordant functions, Kropina change, main scalar.

Supporting Institution

---

Project Number

----

Thanks

----

References

  • [1] Balan V., Crasmareanu M.: Euclidean geometry of Finsler wavefronts through Gaussian curvature, U.P.B. Sci. Bull., Series A, Vol. 72, Issue 2, (2010).
  • [2] Bacso S., Cheng X., Shen Z.: Curvature properties of (α, β)-metrics, Adv. Stud. in Pure Math., 48, (2007), 73-110.
  • [3] Bucătaru I., Miron R.: Finsler-Lagrange geometry. Applications to dynamical systems, Ed. Academiei, (2007).
  • [4] Constantinescu O., Crasmareanu M.: Examples of conics arising arinsing in two-dimensiona Finsler and Lagrange geometries, An. St. Univ. Ovidius Constanta Vol. 17(2), 2009, 45–60.
  • [5] Elgendi, S.G., Kozma, L.: (α, β)-metrics satisfying the T-Condition or the σT-Condition, J. Geom. Anal. 31, 7866–7884 (2021). https://doi.org/10.1007/s12220-020-00555-3.
  • [6] Guojun Y.: Conformal vector fields of projectively flat (α, β)-Finsler spaces, Differential Geometry and its Applications, Vol. 86, 2023, 101972, ISSN 0926-2245, https://doi.org/10.1016/j.difgeo.2022.101972.
  • [7] Kitayama, M., Azuma, M. and Matsumoto, M.: On Finsler Spaces with -Metric, Regularity, Geodesics and Main Scalars, Journal of Hokkaido University of Education Section II A, 46, 1-10, (1995).
  • [8] Li B., Shen Y., Shen Z.: On a class of Douglas metrics, Studia Sci. Math. Hungar., 46(3), 355-365 (2009).
  • [9] Matsumoto M.: A slope of a mountain is a Finsler surface with respect ot time measure, J. Math. Kyoto Univ., 29 (1989), 17-25.
  • [10] Matsumoto M.: On C-reducible Finsler spaces. Tensor (N.S.), 24, (1972), 29–37.
  • [11] Matsumoto M.: Foundations of Finsler Geometry and Special Finsler Spaces, Kaisheisha Press, Otsu, Japan, (1986).
  • [12] Meyer D.C.: Matrix analysis and applied linear algebra, SIAM, (2000).
  • [13] Nesterov Y. and Nemirovskii A.: Interior-point polynomial algorithms in convex programming, volume 13. SIAM, 19.
  • [14] Pişcoran L.I., Najafi B., Barbu C., Tabatabaeifar T.: The deformation of an (α, β)-metric, International Electronic Journal of Geometry, Vol. 14 No. 1 Pag. 167–173 (2021), Doi: https://doi.org/10.36890/IEJG.777149
  • [15] Pişcoran, L.I., Mishra, V.N.: S-curvature for a new class of (α, β)-metrics, RACSAM 111, 1187–1200 (2017). https://doi.org/10.1007/s13398-016-0358-3
  • [16] Pişcoran, L.I., Mishra, V.N.: Projective flatness of a new class of (α, β)-metrics, Georgian Mathematical Journal, vol. 26, no. 1, (2019), pp. 133-139. https://doi.org/10.1515/gmj-2017-0034
  • [17] Pişcoran, L.I., Mishra, V.N.: The variational problem in Lagrange spaces endowed with a special type of (α, β)-metrics, Filomat, 32 (2018), 643–652.
  • [18] Senarath P.: Differential geometry of projectively related Finsler spaces, Ph.D. Thesis, Massey University, (2003), http://mro.massey.ac.nz/bitstream/handle/10179/1918/02_whole.pdf?sequence=1.
  • [19] Shanker G.: Characteristic properties of the indicatrix under a Kropina change of Finsler metrics, International J.Math. Combin. Vol.4(2018), 38-44.
  • [20] Shen Z.: On projectively flat (α, β)-metrics, Canadian Math. Bulletin, 52(1)(2009), 132-144.
  • [21] Tian Y., Cheng X.: Ricci-flat Douglas (α, β)-metrics-metrics, Differential Geometry and its Applications, Volume 30, Issue 1,(2012), 20-32.
  • [22] Zhu H.: On a class of Douglas Finsler metrics, Acta Mathematica Scientia, Volume 38, Issue 2, 2018, Pages 695-708, ISSN 0252-9602, https://doi.org/10.1016/S0252-9602(18)30775-6.
Year 2023, Volume: 16 Issue: 1, 295 - 303, 30.04.2023
https://doi.org/10.36890/iejg.1265041

Abstract

Project Number

----

References

  • [1] Balan V., Crasmareanu M.: Euclidean geometry of Finsler wavefronts through Gaussian curvature, U.P.B. Sci. Bull., Series A, Vol. 72, Issue 2, (2010).
  • [2] Bacso S., Cheng X., Shen Z.: Curvature properties of (α, β)-metrics, Adv. Stud. in Pure Math., 48, (2007), 73-110.
  • [3] Bucătaru I., Miron R.: Finsler-Lagrange geometry. Applications to dynamical systems, Ed. Academiei, (2007).
  • [4] Constantinescu O., Crasmareanu M.: Examples of conics arising arinsing in two-dimensiona Finsler and Lagrange geometries, An. St. Univ. Ovidius Constanta Vol. 17(2), 2009, 45–60.
  • [5] Elgendi, S.G., Kozma, L.: (α, β)-metrics satisfying the T-Condition or the σT-Condition, J. Geom. Anal. 31, 7866–7884 (2021). https://doi.org/10.1007/s12220-020-00555-3.
  • [6] Guojun Y.: Conformal vector fields of projectively flat (α, β)-Finsler spaces, Differential Geometry and its Applications, Vol. 86, 2023, 101972, ISSN 0926-2245, https://doi.org/10.1016/j.difgeo.2022.101972.
  • [7] Kitayama, M., Azuma, M. and Matsumoto, M.: On Finsler Spaces with -Metric, Regularity, Geodesics and Main Scalars, Journal of Hokkaido University of Education Section II A, 46, 1-10, (1995).
  • [8] Li B., Shen Y., Shen Z.: On a class of Douglas metrics, Studia Sci. Math. Hungar., 46(3), 355-365 (2009).
  • [9] Matsumoto M.: A slope of a mountain is a Finsler surface with respect ot time measure, J. Math. Kyoto Univ., 29 (1989), 17-25.
  • [10] Matsumoto M.: On C-reducible Finsler spaces. Tensor (N.S.), 24, (1972), 29–37.
  • [11] Matsumoto M.: Foundations of Finsler Geometry and Special Finsler Spaces, Kaisheisha Press, Otsu, Japan, (1986).
  • [12] Meyer D.C.: Matrix analysis and applied linear algebra, SIAM, (2000).
  • [13] Nesterov Y. and Nemirovskii A.: Interior-point polynomial algorithms in convex programming, volume 13. SIAM, 19.
  • [14] Pişcoran L.I., Najafi B., Barbu C., Tabatabaeifar T.: The deformation of an (α, β)-metric, International Electronic Journal of Geometry, Vol. 14 No. 1 Pag. 167–173 (2021), Doi: https://doi.org/10.36890/IEJG.777149
  • [15] Pişcoran, L.I., Mishra, V.N.: S-curvature for a new class of (α, β)-metrics, RACSAM 111, 1187–1200 (2017). https://doi.org/10.1007/s13398-016-0358-3
  • [16] Pişcoran, L.I., Mishra, V.N.: Projective flatness of a new class of (α, β)-metrics, Georgian Mathematical Journal, vol. 26, no. 1, (2019), pp. 133-139. https://doi.org/10.1515/gmj-2017-0034
  • [17] Pişcoran, L.I., Mishra, V.N.: The variational problem in Lagrange spaces endowed with a special type of (α, β)-metrics, Filomat, 32 (2018), 643–652.
  • [18] Senarath P.: Differential geometry of projectively related Finsler spaces, Ph.D. Thesis, Massey University, (2003), http://mro.massey.ac.nz/bitstream/handle/10179/1918/02_whole.pdf?sequence=1.
  • [19] Shanker G.: Characteristic properties of the indicatrix under a Kropina change of Finsler metrics, International J.Math. Combin. Vol.4(2018), 38-44.
  • [20] Shen Z.: On projectively flat (α, β)-metrics, Canadian Math. Bulletin, 52(1)(2009), 132-144.
  • [21] Tian Y., Cheng X.: Ricci-flat Douglas (α, β)-metrics-metrics, Differential Geometry and its Applications, Volume 30, Issue 1,(2012), 20-32.
  • [22] Zhu H.: On a class of Douglas Finsler metrics, Acta Mathematica Scientia, Volume 38, Issue 2, 2018, Pages 695-708, ISSN 0252-9602, https://doi.org/10.1016/S0252-9602(18)30775-6.
There are 22 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Laurian-loan Pıscoran 0000-0003-2269-718X

Cătălin Barbu 0000-0002-2094-1938

Project Number ----
Publication Date April 30, 2023
Acceptance Date April 13, 2023
Published in Issue Year 2023 Volume: 16 Issue: 1

Cite

APA Pıscoran, L.-l., & Barbu, C. (2023). Some Aspects on a Special Type of $(\alpha,\beta )$-metric. International Electronic Journal of Geometry, 16(1), 295-303. https://doi.org/10.36890/iejg.1265041
AMA Pıscoran Ll, Barbu C. Some Aspects on a Special Type of $(\alpha,\beta )$-metric. Int. Electron. J. Geom. April 2023;16(1):295-303. doi:10.36890/iejg.1265041
Chicago Pıscoran, Laurian-loan, and Cătălin Barbu. “Some Aspects on a Special Type of $(\alpha,\beta )$-Metric”. International Electronic Journal of Geometry 16, no. 1 (April 2023): 295-303. https://doi.org/10.36890/iejg.1265041.
EndNote Pıscoran L-l, Barbu C (April 1, 2023) Some Aspects on a Special Type of $(\alpha,\beta )$-metric. International Electronic Journal of Geometry 16 1 295–303.
IEEE L.-l. Pıscoran and C. Barbu, “Some Aspects on a Special Type of $(\alpha,\beta )$-metric”, Int. Electron. J. Geom., vol. 16, no. 1, pp. 295–303, 2023, doi: 10.36890/iejg.1265041.
ISNAD Pıscoran, Laurian-loan - Barbu, Cătălin. “Some Aspects on a Special Type of $(\alpha,\beta )$-Metric”. International Electronic Journal of Geometry 16/1 (April 2023), 295-303. https://doi.org/10.36890/iejg.1265041.
JAMA Pıscoran L-l, Barbu C. Some Aspects on a Special Type of $(\alpha,\beta )$-metric. Int. Electron. J. Geom. 2023;16:295–303.
MLA Pıscoran, Laurian-loan and Cătălin Barbu. “Some Aspects on a Special Type of $(\alpha,\beta )$-Metric”. International Electronic Journal of Geometry, vol. 16, no. 1, 2023, pp. 295-03, doi:10.36890/iejg.1265041.
Vancouver Pıscoran L-l, Barbu C. Some Aspects on a Special Type of $(\alpha,\beta )$-metric. Int. Electron. J. Geom. 2023;16(1):295-303.