Research Article
BibTex RIS Cite

Maximal Antipodal Subgroups and Covering Homomorphisms with Odd Degree

Year 2024, Volume: 17 Issue: 1, 153 - 156, 23.04.2024
https://doi.org/10.36890/iejg.1436313

Abstract

We show that all of maximal antipodal subgroups in compact Lie groups, which are not necessarily connected, do not change through covering homomorphisms with odd degree.

References

  • [1] Chen, B.-Y.: Geometry and topology of maximal antipodal sets and related topics, Rom. J. Math. Comput. Sci., 23, 6–25 (2023).
  • [2] Chen, B.-Y., Nagano, T.: A Riemannian geometric invariant and its applications to a problem of Borel and Serre. Trans. Amer. Math. Soc. 308, 273–297 (1988).
  • [3] Tanaka, M. S., Tasaki, H.: Antipodal sets of symmetric R-spaces. Osaka J. Math. 50, 161–169 (2013).
  • [4] Tanaka, M. S., Tasaki, H.: Maximal antipodal subgroups of the automorphism groups of compact Lie algebras. Springer Proceedings in Mathematics & Statistics 203, Y. J. Suh et al. (eds.), "Hermitian-Grassmannian Submanifolds", 39–47 (2017).
  • [5] Tanaka, M. S., Tasaki, H.: Maximal antipodal subgroups of some compact classical Lie groups. J. Lie Theory 27, 801–829 (2017).
  • [6] Tanaka, M. S., Tasaki, H.: Maximal antipodal sets of compact classical symmetric spaces and their cardinalities I. Differ. Geom. Appl. 73 101682 (2020).
Year 2024, Volume: 17 Issue: 1, 153 - 156, 23.04.2024
https://doi.org/10.36890/iejg.1436313

Abstract

References

  • [1] Chen, B.-Y.: Geometry and topology of maximal antipodal sets and related topics, Rom. J. Math. Comput. Sci., 23, 6–25 (2023).
  • [2] Chen, B.-Y., Nagano, T.: A Riemannian geometric invariant and its applications to a problem of Borel and Serre. Trans. Amer. Math. Soc. 308, 273–297 (1988).
  • [3] Tanaka, M. S., Tasaki, H.: Antipodal sets of symmetric R-spaces. Osaka J. Math. 50, 161–169 (2013).
  • [4] Tanaka, M. S., Tasaki, H.: Maximal antipodal subgroups of the automorphism groups of compact Lie algebras. Springer Proceedings in Mathematics & Statistics 203, Y. J. Suh et al. (eds.), "Hermitian-Grassmannian Submanifolds", 39–47 (2017).
  • [5] Tanaka, M. S., Tasaki, H.: Maximal antipodal subgroups of some compact classical Lie groups. J. Lie Theory 27, 801–829 (2017).
  • [6] Tanaka, M. S., Tasaki, H.: Maximal antipodal sets of compact classical symmetric spaces and their cardinalities I. Differ. Geom. Appl. 73 101682 (2020).
There are 6 citations in total.

Details

Primary Language English
Subjects Algebraic and Differential Geometry
Journal Section Research Article
Authors

Makiko Tanaka 0000-0002-0621-4777

Hiroyuki Tasaki This is me 0000-0003-2546-0065

Early Pub Date April 6, 2024
Publication Date April 23, 2024
Submission Date February 14, 2024
Acceptance Date April 1, 2024
Published in Issue Year 2024 Volume: 17 Issue: 1

Cite

APA Tanaka, M., & Tasaki, H. (2024). Maximal Antipodal Subgroups and Covering Homomorphisms with Odd Degree. International Electronic Journal of Geometry, 17(1), 153-156. https://doi.org/10.36890/iejg.1436313
AMA Tanaka M, Tasaki H. Maximal Antipodal Subgroups and Covering Homomorphisms with Odd Degree. Int. Electron. J. Geom. April 2024;17(1):153-156. doi:10.36890/iejg.1436313
Chicago Tanaka, Makiko, and Hiroyuki Tasaki. “Maximal Antipodal Subgroups and Covering Homomorphisms With Odd Degree”. International Electronic Journal of Geometry 17, no. 1 (April 2024): 153-56. https://doi.org/10.36890/iejg.1436313.
EndNote Tanaka M, Tasaki H (April 1, 2024) Maximal Antipodal Subgroups and Covering Homomorphisms with Odd Degree. International Electronic Journal of Geometry 17 1 153–156.
IEEE M. Tanaka and H. Tasaki, “Maximal Antipodal Subgroups and Covering Homomorphisms with Odd Degree”, Int. Electron. J. Geom., vol. 17, no. 1, pp. 153–156, 2024, doi: 10.36890/iejg.1436313.
ISNAD Tanaka, Makiko - Tasaki, Hiroyuki. “Maximal Antipodal Subgroups and Covering Homomorphisms With Odd Degree”. International Electronic Journal of Geometry 17/1 (April 2024), 153-156. https://doi.org/10.36890/iejg.1436313.
JAMA Tanaka M, Tasaki H. Maximal Antipodal Subgroups and Covering Homomorphisms with Odd Degree. Int. Electron. J. Geom. 2024;17:153–156.
MLA Tanaka, Makiko and Hiroyuki Tasaki. “Maximal Antipodal Subgroups and Covering Homomorphisms With Odd Degree”. International Electronic Journal of Geometry, vol. 17, no. 1, 2024, pp. 153-6, doi:10.36890/iejg.1436313.
Vancouver Tanaka M, Tasaki H. Maximal Antipodal Subgroups and Covering Homomorphisms with Odd Degree. Int. Electron. J. Geom. 2024;17(1):153-6.