Research Article
BibTex RIS Cite
Year 2024, Volume: 17 Issue: 1, 245 - 251, 23.04.2024
https://doi.org/10.36890/iejg.1436665

Abstract

References

  • [1] Aubry, E.: Finiteness of π1 and geometric inequalities in almost positive Ricci curvature. Ann. Sci. École Norm. Sup. 40 (4), 675–695 (2007).
  • [2] Bakry D., Émery, M.: Diffusions hypercontractives. Séminaire de probabilités, XIX, 1983/84, Lecture Notes in Math., vol. 1123, Springer, Berlin, 177–206 (1985).
  • [3] Gallot, S.: Isoperimetric inequalities based on integral norms of Ricci curvature. Astérisque 157–158, Colloque Paul Lévy sur les Processus Stochastiques (Palaiseau, 1987), 191–216 (1988).
  • [4] Li, F., Wu, J.-Y., Zheng, Y.: Myers’ type theorem for integral Bakry-Émery Ricci tensor bounds. Results Math. 76 (1), Paper No. 32, (2021).
  • [5] Petersen, P., Wei, G., Relative volume comparison with integral curvature bounds. Geom. Funct. Anal. 7 (6), 1031–1045 (1997).
  • [6] Ramos Olivé, X., Seto, S. Gradient Estimates of a nonlinear parabolic equation under integral Bakry-Émery Ricci condition, Preprint (2024).
  • [7] Seto, S., Wei, G. First eigenvalue of the p-Laplacian under integral curvature condition. Nonlinear Anal. 163, 60–70 (2017).
  • [8] Tolksdorf, P.: Regularity for a more general class of quasilinear elliptic equation. J. Differential Equations 51 (1), 126–150 (1984).
  • [9] Wang, Y.-Z., Li, H.-Q.Lower bound estimates for the first eigenvalue of the weighted p-Laplacian on smooth metric measure spaces. Differential Geom. Appl. 45, 23–42 (2016).
  • [10] Wang, L., Wei, G. Local Sobolev constant estimate for integral Bakry-Émery Ricci curvature. Pacific J. Math. 300 (1), 233–256 (2019).
  • [11] Wei, G., Wylie, W. Comparison geometry for the Bakry-Émery Rici tensor. J. Differential Geom. 83 (2), 377–405 (2009).
  • [12] Wu, J.-Y. Comparison geometry for integral Bakry-Émery Ricci tensor bounds. J. Geom. Anal. 29 (1), 828–867 (2019).

Lichnerowicz Type Estimate for the $p$-Laplacian Under Weighted Integral Curvature Bounds

Year 2024, Volume: 17 Issue: 1, 245 - 251, 23.04.2024
https://doi.org/10.36890/iejg.1436665

Abstract

In this short note, we prove a quantitative lower bound in terms of the dimension and curvature,
known as a Lichnerowicz-type estimate, for the first eigenvalue of the p-Laplacian on Riemannian
manifolds with a bound on the integral norm of the Bakry-Émery curvature.

Thanks

Thank you for your consideration

References

  • [1] Aubry, E.: Finiteness of π1 and geometric inequalities in almost positive Ricci curvature. Ann. Sci. École Norm. Sup. 40 (4), 675–695 (2007).
  • [2] Bakry D., Émery, M.: Diffusions hypercontractives. Séminaire de probabilités, XIX, 1983/84, Lecture Notes in Math., vol. 1123, Springer, Berlin, 177–206 (1985).
  • [3] Gallot, S.: Isoperimetric inequalities based on integral norms of Ricci curvature. Astérisque 157–158, Colloque Paul Lévy sur les Processus Stochastiques (Palaiseau, 1987), 191–216 (1988).
  • [4] Li, F., Wu, J.-Y., Zheng, Y.: Myers’ type theorem for integral Bakry-Émery Ricci tensor bounds. Results Math. 76 (1), Paper No. 32, (2021).
  • [5] Petersen, P., Wei, G., Relative volume comparison with integral curvature bounds. Geom. Funct. Anal. 7 (6), 1031–1045 (1997).
  • [6] Ramos Olivé, X., Seto, S. Gradient Estimates of a nonlinear parabolic equation under integral Bakry-Émery Ricci condition, Preprint (2024).
  • [7] Seto, S., Wei, G. First eigenvalue of the p-Laplacian under integral curvature condition. Nonlinear Anal. 163, 60–70 (2017).
  • [8] Tolksdorf, P.: Regularity for a more general class of quasilinear elliptic equation. J. Differential Equations 51 (1), 126–150 (1984).
  • [9] Wang, Y.-Z., Li, H.-Q.Lower bound estimates for the first eigenvalue of the weighted p-Laplacian on smooth metric measure spaces. Differential Geom. Appl. 45, 23–42 (2016).
  • [10] Wang, L., Wei, G. Local Sobolev constant estimate for integral Bakry-Émery Ricci curvature. Pacific J. Math. 300 (1), 233–256 (2019).
  • [11] Wei, G., Wylie, W. Comparison geometry for the Bakry-Émery Rici tensor. J. Differential Geom. 83 (2), 377–405 (2009).
  • [12] Wu, J.-Y. Comparison geometry for integral Bakry-Émery Ricci tensor bounds. J. Geom. Anal. 29 (1), 828–867 (2019).
There are 12 citations in total.

Details

Primary Language English
Subjects Algebraic and Differential Geometry
Journal Section Research Article
Authors

Shoo Seto 0009-0005-6276-7949

Early Pub Date April 9, 2024
Publication Date April 23, 2024
Submission Date February 13, 2024
Acceptance Date April 1, 2024
Published in Issue Year 2024 Volume: 17 Issue: 1

Cite

APA Seto, S. (2024). Lichnerowicz Type Estimate for the $p$-Laplacian Under Weighted Integral Curvature Bounds. International Electronic Journal of Geometry, 17(1), 245-251. https://doi.org/10.36890/iejg.1436665
AMA Seto S. Lichnerowicz Type Estimate for the $p$-Laplacian Under Weighted Integral Curvature Bounds. Int. Electron. J. Geom. April 2024;17(1):245-251. doi:10.36890/iejg.1436665
Chicago Seto, Shoo. “Lichnerowicz Type Estimate for the $p$-Laplacian Under Weighted Integral Curvature Bounds”. International Electronic Journal of Geometry 17, no. 1 (April 2024): 245-51. https://doi.org/10.36890/iejg.1436665.
EndNote Seto S (April 1, 2024) Lichnerowicz Type Estimate for the $p$-Laplacian Under Weighted Integral Curvature Bounds. International Electronic Journal of Geometry 17 1 245–251.
IEEE S. Seto, “Lichnerowicz Type Estimate for the $p$-Laplacian Under Weighted Integral Curvature Bounds”, Int. Electron. J. Geom., vol. 17, no. 1, pp. 245–251, 2024, doi: 10.36890/iejg.1436665.
ISNAD Seto, Shoo. “Lichnerowicz Type Estimate for the $p$-Laplacian Under Weighted Integral Curvature Bounds”. International Electronic Journal of Geometry 17/1 (April 2024), 245-251. https://doi.org/10.36890/iejg.1436665.
JAMA Seto S. Lichnerowicz Type Estimate for the $p$-Laplacian Under Weighted Integral Curvature Bounds. Int. Electron. J. Geom. 2024;17:245–251.
MLA Seto, Shoo. “Lichnerowicz Type Estimate for the $p$-Laplacian Under Weighted Integral Curvature Bounds”. International Electronic Journal of Geometry, vol. 17, no. 1, 2024, pp. 245-51, doi:10.36890/iejg.1436665.
Vancouver Seto S. Lichnerowicz Type Estimate for the $p$-Laplacian Under Weighted Integral Curvature Bounds. Int. Electron. J. Geom. 2024;17(1):245-51.