Research Article
BibTex RIS Cite

A New Link to Helices in Euclidean $3$-Space

Year 2024, Volume: 17 Issue: 2, 519 - 530, 27.10.2024
https://doi.org/10.36890/iejg.1393863

Abstract

In this paper, we introduce a novel approach for obtaining the parametric expression and description of a general helix, slant helix, and Darboux helix. The new method involves projecting $\alpha $ onto a plane passing through $\alpha \left( 0\right) $ and orthogonal to the unit axis vector $U$ in order to determine the position vector of the general helix $\alpha $. The position vector of the helix with the plane curve $\gamma $ and its axis $U$ is then established. Additionally, a relation between the curvatures of $\alpha $ and $\gamma $ is presented. The proposed technique is then applied to derive the parametric representation of a slant helix and Darboux helix, followed by the provision of various examples obtained through the application of this methodology.

References

  • [1] Ali, A.T.: Position vectors of general helices in Euclidean 3-space. Bull. Math. Anal. Appl. 3(2), 198–205 (2011).
  • [2] Ali, A.T.: Position vectors of slant helices in Euclidean 3-space. J. Egyptian Math. Soc. 20(1), 1–6 (2012).
  • [3] Boyer, C.B.: A history of mathematics. John Wiley & Sons, Inc., New York (1991).
  • [4] Şenol, A.: General helices in space forms. Ph.D. Thesis, Ankara University (2008).
  • [5] Izumiya, S., Takeuchi, N.: New special curves and developable surfaces. Turkish J. Math. 28(2), 153–163 (2004).
  • [6] O’Neill, B.: Elementary differential geometry. (2nd edition) Elsevier/Academic Press, Amsterdam (2006).
  • [7] Scofield, P.D.: Curves of constant precession. Amer. Math. Monthly 102(6), 531–537 (1995).
  • [8] Struik, D.J.: Lectures on Classical Differential Geometry. Addison-Wesley Press, Inc., Cambridge, MA (1950).
Year 2024, Volume: 17 Issue: 2, 519 - 530, 27.10.2024
https://doi.org/10.36890/iejg.1393863

Abstract

References

  • [1] Ali, A.T.: Position vectors of general helices in Euclidean 3-space. Bull. Math. Anal. Appl. 3(2), 198–205 (2011).
  • [2] Ali, A.T.: Position vectors of slant helices in Euclidean 3-space. J. Egyptian Math. Soc. 20(1), 1–6 (2012).
  • [3] Boyer, C.B.: A history of mathematics. John Wiley & Sons, Inc., New York (1991).
  • [4] Şenol, A.: General helices in space forms. Ph.D. Thesis, Ankara University (2008).
  • [5] Izumiya, S., Takeuchi, N.: New special curves and developable surfaces. Turkish J. Math. 28(2), 153–163 (2004).
  • [6] O’Neill, B.: Elementary differential geometry. (2nd edition) Elsevier/Academic Press, Amsterdam (2006).
  • [7] Scofield, P.D.: Curves of constant precession. Amer. Math. Monthly 102(6), 531–537 (1995).
  • [8] Struik, D.J.: Lectures on Classical Differential Geometry. Addison-Wesley Press, Inc., Cambridge, MA (1950).
There are 8 citations in total.

Details

Primary Language English
Subjects Algebraic and Differential Geometry
Journal Section Research Article
Authors

Ufuk Öztürk

Halise Kılıçparlar

Esra Betül Koç Öztürk

Early Pub Date September 23, 2024
Publication Date October 27, 2024
Submission Date November 21, 2023
Acceptance Date January 14, 2024
Published in Issue Year 2024 Volume: 17 Issue: 2

Cite

APA Öztürk, U., Kılıçparlar, H., & Koç Öztürk, E. B. (2024). A New Link to Helices in Euclidean $3$-Space. International Electronic Journal of Geometry, 17(2), 519-530. https://doi.org/10.36890/iejg.1393863
AMA Öztürk U, Kılıçparlar H, Koç Öztürk EB. A New Link to Helices in Euclidean $3$-Space. Int. Electron. J. Geom. October 2024;17(2):519-530. doi:10.36890/iejg.1393863
Chicago Öztürk, Ufuk, Halise Kılıçparlar, and Esra Betül Koç Öztürk. “A New Link to Helices in Euclidean $3$-Space”. International Electronic Journal of Geometry 17, no. 2 (October 2024): 519-30. https://doi.org/10.36890/iejg.1393863.
EndNote Öztürk U, Kılıçparlar H, Koç Öztürk EB (October 1, 2024) A New Link to Helices in Euclidean $3$-Space. International Electronic Journal of Geometry 17 2 519–530.
IEEE U. Öztürk, H. Kılıçparlar, and E. B. Koç Öztürk, “A New Link to Helices in Euclidean $3$-Space”, Int. Electron. J. Geom., vol. 17, no. 2, pp. 519–530, 2024, doi: 10.36890/iejg.1393863.
ISNAD Öztürk, Ufuk et al. “A New Link to Helices in Euclidean $3$-Space”. International Electronic Journal of Geometry 17/2 (October 2024), 519-530. https://doi.org/10.36890/iejg.1393863.
JAMA Öztürk U, Kılıçparlar H, Koç Öztürk EB. A New Link to Helices in Euclidean $3$-Space. Int. Electron. J. Geom. 2024;17:519–530.
MLA Öztürk, Ufuk et al. “A New Link to Helices in Euclidean $3$-Space”. International Electronic Journal of Geometry, vol. 17, no. 2, 2024, pp. 519-30, doi:10.36890/iejg.1393863.
Vancouver Öztürk U, Kılıçparlar H, Koç Öztürk EB. A New Link to Helices in Euclidean $3$-Space. Int. Electron. J. Geom. 2024;17(2):519-30.