Research Article
BibTex RIS Cite

On Locally Conformal Kaehler Submersions

Year 2024, Volume: 17 Issue: 2, 507 - 518, 27.10.2024
https://doi.org/10.36890/iejg.1461324

Abstract

We study locally conformal Kaehler submersions, i.e., almost Hermitian submersions whose total manifolds are locally conformal Kaehler. We prove that the vertical distribution of a locally conformal Kaehler submersion is totally geodesic iff the Lee vector field of total manifold is vertical. We also obtain the O'Neill tensors $\tilde{\mathcal{A}}$ and $\tilde{\mathcal{T}}$ with respect to the Weyl connection of a locally conformal Kaehler submersion. Then, we proved that the horizontal distribution of such a submersion is integrable iff $\tilde{\mathcal{A}} \equiv 0$. Finally, we get Chen-Ricci inequalities for locally conformal Kaehler space form submersions and Hopf space form submersions.

References

  • [1] Chen, B.Y.: Relations between Ricci curvature and shape operator for submanifolds with arbitrary codimensions. Glasgow Math. J., 41, 33-41 (1999).
  • [2] Deng, S.: An improved Chen-Ricci inequality. Int. Elec. J. Geom., 2(2), 39-45 (2009).
  • [3] Dragomir, S.: Generalized Hopf manifolds locally conformal Kahler structures and real hypersurfaces. Kodai Math. J., 14, 366-391 (1991).
  • [4] Dragomir, S., Ornea, L.: Locally conformal Kahler geometry. Boston, Basel, Berlin: Birkhauser (1998).
  • [5] Falcitelli, M., Lanus, S., Pastore, A.M.: Riemannian Submersion and Related Topics. Singapore: Worl Scientific Publishing Co. Pte. Ltd. (2004).
  • [6] Gray , A.:Pseudo-Riemannian Almost Product Manifolds and Submersions. Journal of Mathematics and Mechanics, 16 (7), 715-737 (1967).
  • [7] Eells, J., Sampson, J.H: Harmonic Mapping of Riemannian Manifolds, Amer. J. Math., 109-160 (1964).
  • [8] Marrero, J.C., Rocha, J.: Locally conformal Kaehler submersions. Geom. Dedicata., 52(3), 271-289 (1994).
  • [9] Musso, E.: Submersioni localmente conformemente Kahleriane. Boll. Unione Mat. It., 7 3-A, 171-176 (1989).
  • [10] O’Neill, B.: The fundamental equations of a submersion. Mich. Math. J., 13, 458-469 (1966).
  • [11] Vaisman, I. On locally conformal almost Kahler manifolds, Israel Journal of Mathematics, 24 (3-4), 338-351. (1976).
  • [12] Vilms, J.: Totally geodesic maps. J. Differential Geom., 4, 73-79 (1970).
  • [13] Watson, B.: Almost Hermitian submersions. J. Differ. Geom., 11(1), 147-165 (1976).
Year 2024, Volume: 17 Issue: 2, 507 - 518, 27.10.2024
https://doi.org/10.36890/iejg.1461324

Abstract

References

  • [1] Chen, B.Y.: Relations between Ricci curvature and shape operator for submanifolds with arbitrary codimensions. Glasgow Math. J., 41, 33-41 (1999).
  • [2] Deng, S.: An improved Chen-Ricci inequality. Int. Elec. J. Geom., 2(2), 39-45 (2009).
  • [3] Dragomir, S.: Generalized Hopf manifolds locally conformal Kahler structures and real hypersurfaces. Kodai Math. J., 14, 366-391 (1991).
  • [4] Dragomir, S., Ornea, L.: Locally conformal Kahler geometry. Boston, Basel, Berlin: Birkhauser (1998).
  • [5] Falcitelli, M., Lanus, S., Pastore, A.M.: Riemannian Submersion and Related Topics. Singapore: Worl Scientific Publishing Co. Pte. Ltd. (2004).
  • [6] Gray , A.:Pseudo-Riemannian Almost Product Manifolds and Submersions. Journal of Mathematics and Mechanics, 16 (7), 715-737 (1967).
  • [7] Eells, J., Sampson, J.H: Harmonic Mapping of Riemannian Manifolds, Amer. J. Math., 109-160 (1964).
  • [8] Marrero, J.C., Rocha, J.: Locally conformal Kaehler submersions. Geom. Dedicata., 52(3), 271-289 (1994).
  • [9] Musso, E.: Submersioni localmente conformemente Kahleriane. Boll. Unione Mat. It., 7 3-A, 171-176 (1989).
  • [10] O’Neill, B.: The fundamental equations of a submersion. Mich. Math. J., 13, 458-469 (1966).
  • [11] Vaisman, I. On locally conformal almost Kahler manifolds, Israel Journal of Mathematics, 24 (3-4), 338-351. (1976).
  • [12] Vilms, J.: Totally geodesic maps. J. Differential Geom., 4, 73-79 (1970).
  • [13] Watson, B.: Almost Hermitian submersions. J. Differ. Geom., 11(1), 147-165 (1976).
There are 13 citations in total.

Details

Primary Language English
Subjects Algebraic and Differential Geometry
Journal Section Research Article
Authors

Çağrıhan Çimen 0009-0000-6331-9615

Beran Pirinççi 0000-0002-4692-9590

Hakan Mete Taştan 0000-0002-0773-9305

Deniz Ulusoy 0000-0002-0742-4047

Early Pub Date September 20, 2024
Publication Date October 27, 2024
Submission Date April 25, 2024
Acceptance Date July 22, 2024
Published in Issue Year 2024 Volume: 17 Issue: 2

Cite

APA Çimen, Ç., Pirinççi, B., Taştan, H. M., Ulusoy, D. (2024). On Locally Conformal Kaehler Submersions. International Electronic Journal of Geometry, 17(2), 507-518. https://doi.org/10.36890/iejg.1461324
AMA Çimen Ç, Pirinççi B, Taştan HM, Ulusoy D. On Locally Conformal Kaehler Submersions. Int. Electron. J. Geom. October 2024;17(2):507-518. doi:10.36890/iejg.1461324
Chicago Çimen, Çağrıhan, Beran Pirinççi, Hakan Mete Taştan, and Deniz Ulusoy. “On Locally Conformal Kaehler Submersions”. International Electronic Journal of Geometry 17, no. 2 (October 2024): 507-18. https://doi.org/10.36890/iejg.1461324.
EndNote Çimen Ç, Pirinççi B, Taştan HM, Ulusoy D (October 1, 2024) On Locally Conformal Kaehler Submersions. International Electronic Journal of Geometry 17 2 507–518.
IEEE Ç. Çimen, B. Pirinççi, H. M. Taştan, and D. Ulusoy, “On Locally Conformal Kaehler Submersions”, Int. Electron. J. Geom., vol. 17, no. 2, pp. 507–518, 2024, doi: 10.36890/iejg.1461324.
ISNAD Çimen, Çağrıhan et al. “On Locally Conformal Kaehler Submersions”. International Electronic Journal of Geometry 17/2 (October 2024), 507-518. https://doi.org/10.36890/iejg.1461324.
JAMA Çimen Ç, Pirinççi B, Taştan HM, Ulusoy D. On Locally Conformal Kaehler Submersions. Int. Electron. J. Geom. 2024;17:507–518.
MLA Çimen, Çağrıhan et al. “On Locally Conformal Kaehler Submersions”. International Electronic Journal of Geometry, vol. 17, no. 2, 2024, pp. 507-18, doi:10.36890/iejg.1461324.
Vancouver Çimen Ç, Pirinççi B, Taştan HM, Ulusoy D. On Locally Conformal Kaehler Submersions. Int. Electron. J. Geom. 2024;17(2):507-18.