On Locally Conformal Kaehler Submersions
Year 2024,
Volume: 17 Issue: 2, 507 - 518, 27.10.2024
Çağrıhan Çimen
,
Beran Pirinççi
,
Hakan Mete Taştan
,
Deniz Ulusoy
Abstract
We study locally conformal Kaehler submersions, i.e., almost Hermitian submersions whose total manifolds are locally conformal Kaehler. We prove that the vertical distribution of a locally conformal Kaehler submersion is totally geodesic iff the Lee vector field of total manifold is vertical. We also obtain the O'Neill tensors $\tilde{\mathcal{A}}$ and $\tilde{\mathcal{T}}$ with respect to the Weyl connection of a locally conformal Kaehler submersion. Then, we proved that the horizontal distribution of such a submersion is integrable iff $\tilde{\mathcal{A}} \equiv 0$. Finally, we get Chen-Ricci inequalities for locally conformal Kaehler space form submersions and Hopf space form submersions.
References
- [1] Chen, B.Y.: Relations between Ricci curvature and shape operator for submanifolds with arbitrary codimensions. Glasgow Math. J., 41, 33-41 (1999).
- [2] Deng, S.: An improved Chen-Ricci inequality. Int. Elec. J. Geom., 2(2), 39-45 (2009).
- [3] Dragomir, S.: Generalized Hopf manifolds locally conformal Kahler structures and real hypersurfaces. Kodai Math. J., 14, 366-391 (1991).
- [4] Dragomir, S., Ornea, L.: Locally conformal Kahler geometry. Boston, Basel, Berlin: Birkhauser (1998).
- [5] Falcitelli, M., Lanus, S., Pastore, A.M.: Riemannian Submersion and Related Topics. Singapore: Worl Scientific Publishing Co. Pte. Ltd.
(2004).
- [6] Gray , A.:Pseudo-Riemannian Almost Product Manifolds and Submersions. Journal of Mathematics and Mechanics, 16 (7), 715-737 (1967).
- [7] Eells, J., Sampson, J.H: Harmonic Mapping of Riemannian Manifolds, Amer. J. Math., 109-160 (1964).
- [8] Marrero, J.C., Rocha, J.: Locally conformal Kaehler submersions. Geom. Dedicata., 52(3), 271-289 (1994).
- [9] Musso, E.: Submersioni localmente conformemente Kahleriane. Boll. Unione Mat. It., 7 3-A, 171-176 (1989).
- [10] O’Neill, B.: The fundamental equations of a submersion. Mich. Math. J., 13, 458-469 (1966).
- [11] Vaisman, I. On locally conformal almost Kahler manifolds, Israel Journal of Mathematics, 24 (3-4), 338-351. (1976).
- [12] Vilms, J.: Totally geodesic maps. J. Differential Geom., 4, 73-79 (1970).
- [13] Watson, B.: Almost Hermitian submersions. J. Differ. Geom., 11(1), 147-165 (1976).
Year 2024,
Volume: 17 Issue: 2, 507 - 518, 27.10.2024
Çağrıhan Çimen
,
Beran Pirinççi
,
Hakan Mete Taştan
,
Deniz Ulusoy
References
- [1] Chen, B.Y.: Relations between Ricci curvature and shape operator for submanifolds with arbitrary codimensions. Glasgow Math. J., 41, 33-41 (1999).
- [2] Deng, S.: An improved Chen-Ricci inequality. Int. Elec. J. Geom., 2(2), 39-45 (2009).
- [3] Dragomir, S.: Generalized Hopf manifolds locally conformal Kahler structures and real hypersurfaces. Kodai Math. J., 14, 366-391 (1991).
- [4] Dragomir, S., Ornea, L.: Locally conformal Kahler geometry. Boston, Basel, Berlin: Birkhauser (1998).
- [5] Falcitelli, M., Lanus, S., Pastore, A.M.: Riemannian Submersion and Related Topics. Singapore: Worl Scientific Publishing Co. Pte. Ltd.
(2004).
- [6] Gray , A.:Pseudo-Riemannian Almost Product Manifolds and Submersions. Journal of Mathematics and Mechanics, 16 (7), 715-737 (1967).
- [7] Eells, J., Sampson, J.H: Harmonic Mapping of Riemannian Manifolds, Amer. J. Math., 109-160 (1964).
- [8] Marrero, J.C., Rocha, J.: Locally conformal Kaehler submersions. Geom. Dedicata., 52(3), 271-289 (1994).
- [9] Musso, E.: Submersioni localmente conformemente Kahleriane. Boll. Unione Mat. It., 7 3-A, 171-176 (1989).
- [10] O’Neill, B.: The fundamental equations of a submersion. Mich. Math. J., 13, 458-469 (1966).
- [11] Vaisman, I. On locally conformal almost Kahler manifolds, Israel Journal of Mathematics, 24 (3-4), 338-351. (1976).
- [12] Vilms, J.: Totally geodesic maps. J. Differential Geom., 4, 73-79 (1970).
- [13] Watson, B.: Almost Hermitian submersions. J. Differ. Geom., 11(1), 147-165 (1976).