Research Article
BibTex RIS Cite
Year 2024, Volume: 17 Issue: 2, 559 - 659
https://doi.org/10.36890/iejg.1464086

Abstract

References

  • [1] Abe, K.: The classification of homogeneous structures on 3-dimensional space forms, Math. J. Okayama Univ. 28 (1), 173-189 (1986).
  • [2] Agricola, T, Friedrich, F.: On the holonomy of connections with skew-symmetric torsion, Math. Ann. 328,711-748 (2004).
  • [3] Alekseevsky, D., Gorodski, C.: Semisimple symmetric contact spaces, Indag. Math. New Ser. 31 (6), 1110-1133 (2020).
  • [4] Ambrose, W., Palais, R.S., Singer, I. M.: Sprays, Ann. Acad. Brasil. Ciˇencias 32, 163-178 (1960).
  • [5] Ambrose, W., Singer, I. M.: On homogeneous Riemannian manifolds, Duke Math. J. 25, 647-669 (1958).
  • [6] Auslander, L., Green, L., Hahn, F.: Flows on homogeneous spaces, with the assistance of L. Markus and W. Massey, and an appendix by L. Greenberg, Ann. of Math. Stud. 53 Princeton University Press, Princeton, NJ, 1963.
  • [7] Azencott, R., Wilson, E. N.: Homogeneous manifolds with negative curvature. I, Trans. Am. Math. Soc. 215, 323-362 (1976).
  • [8] Azencott, R., Wilson, E. N.: Homogeneous manifolds with negative curvature. II, Mem. Am. Math. Soc. 178 (1976).
  • [9] Bazdar, A., Teleman, A.: Infinitesimal homogeneity and bundles, Ann Glob Anal Geom 59, 197-231 (2021).
  • [10] Belkhelfa, M., Dillen, F., Inoguchi, J.: Surfaces with parallel second fundamental form in Bianchi-Cartan-Vranceanu spaces, PDE’s, Submanifolds and Affine Differential Geometry (Warsaw, 2000), Banach Center Publ., 57, 67-87, (2002).
  • [11] Bérad-Bergery, L., Bourguignon, J. P.: Laplacians and Riemannian submersions with totally geodesic fibers, Illinois J. Math. 26, 181-200 (1982).
  • [12] Berger, M.: Les Varietes Riemanniennes homogenes normlales simplement connexes a courbure strictement positive, Annli Scuola Norm. Sup. Pisa 15, 179-246 (1961).
  • [13] Bianchi, L.: Sugli sazi a tre dimensioni che ammettono un gruppo continuo di movimenti, Memorie di Matematica e di Fisica della Societa Italiana delle Scienze, Serie Tereza, Tomo XI, 267-352 (1898); English translation: On the three-dimensional spacse which admit a continuous group of motions, General Relativity and Gravitation 33 (12), 2171-2252 (2001).
  • [14] Bieliavsky, P., Falbel, E., Gorodski, C.: The classification of simply-connected contact sub-Riemannian symmetric spaces, Pacific J. Math. 188 (1), 65-82 (1999).
  • [15] Blair, D. E.: Almost contact manifolds with Killing structure tensors, Pacific J. Math. 39 (2), 285-292 (1971).
  • [16] Blair, D. E.: Contact Manifolds in Riemannian Geometry, Lecture Notes in Math. 509, Springer-Verlag, Berlin-Heidelberg-New-York, (1976).
  • [17] Blair, D. E.: Riemannian Geometry of Contact and Symplectic Manifolds, Progress in Math. 203, Birkhäuser, Boston, Basel, Berlin, (2002).
  • [18] Blair, D.E., Koufogiorgos, T., Papantoniou, B.J.: Contact metric manifolds satisfying a nullity condition, Israel J. Math. 91, 189-214 (1995).
  • [19] Blair, D.E., Showers, D.K.: Almost contact manifolds with Killing structure tensors. II, J. Differ. Geom. 9, 577-582 (1974).
  • [20] Blair, D. E., Vanhecke, L.: Symmetries and φ-symmetric spaces, Tôhoku Math. J. (2) 39 (3), 373-383 (1987).
  • [21] Blair, D. E., Vanhecke, L.: New characterizations of φ-symmetric spaces, Kodai Math. J. 10 (1), 102-107 (1987).
  • [22] Blair, D. E., Vanhecke, L.: Volume-preserving φ-geodesic symmetries, C. R. Math. Acad. Sci. Soc. R. Can. 9, 31-36 (1987).
  • [23] Boeckx, E.: A class of locally φ-symmetric contact metric spaces, Arch. Math. 72 (6), 466-472 (1999).
  • [24] Boeckx, E.: A full classification of contact metric (κ, μ)-spaces, Illinois J. Math. 44, 212-219 (2000).
  • [25] Boeckx, E., Bueken, P., Vanhecke, L.: Flow-symmetric Riemannian manifolds, Beitr. Algebra Geom. 40, (2), 459-474 (1999).
  • [26] Boeckx, E., Cho, J. T.: Locally symmetric contact metric manifolds, Monatsh. Math. 148 (4), 269-281 (2006).
  • [27] Boeckx, E., Cho, J. T.: Pseudo-Hermitian symmetries, Israel J. Math. 166, 125-145 (2008).
  • [28] Boothby, W. M., Wang, H. C.: On contact manifolds, Ann. Math. (2) 68, 721-734 (1958).
  • [29] Boyer, C. P., Galicki, K.: Sasakian Geometry, Oxford Mathematical Monographs, Oxford University Press, Oxford, 2008.
  • [30] Bueken, P., Vanhecke, L.: Geometry and symmetry on Sasakian manifolds, Tsukuba J. Math. 12 (2), 403-422 (1988).
  • [31] Bueken, P., Vanhecke, L.: Harmonic reflections on Sasakian manifolds, Math. J. Okayama Univ. 30, 187-197 (1988).
  • [32] Bueken, P., Vanhecke, L.: Reflections in K-contact geometry, Math. Rep. Toyama Univ. 12, 41-49 (1989).
  • [33] Bueken, P., Vanhecke, L.: Rotations and harmonicity in contact geometry, Rend. Mat. Appl., VII. 12 (1), 127-141 (1992).
  • [34] Burstall, F. E., Rawnsley, J. H.: Twistor Theory for Riemannian Symmetric Spaces With Applications to Harmonic Maps of Riemann Surfaces, Lecture Notes in Math. 1424, Springer Verlag, (1990).
  • [35] Cabrerizo, J. L. Fernández, M., Gómez, J. S.: On the existence of almost contact structure and the contact magnetic field, Acta Math. Hung. 125 (1-2), 191-199 (2009).
  • [36] Calvaruso, C., Castrillón López, M.: Pseudo-Riemannian Homogeneous Structures, Springer Verlag, (2019).
  • [37] Calvaruso, G., Fino, A.: Five-dimensional K-contact Lie algebras, Monatsh. Math. 167 (1), 35-59 (2012).
  • [38] Cartan, E.: Leçon sur la geometrie des espaces de Riemann, Second Edition, Gauthier-Villards, Paris, (1946).
  • [39] Calviño-Louzao, E., Ferreiro-Subrido, M., García-Río, E., Vázquez-Lorenzo, R.: Homogeneous Riemannian structures in dimension three, Rev. Real. Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. 117, Article number 70 (2023).
  • [40] Castrillón López, M., M. Gadea, P. M., Swann, A.: Homogeneous structures on real and complex hyperbolic spaces, Illinois J. Math. 53 (2), 561-574 (2009).
  • [41] Castrillón López, M., M. Gadea, P. M., Swann, A.: The homogeneous geometries of real hyperbolic space, Mediter. J. Math. 10 (2), 1011-1022 (2013).
  • [42] Castrillón López, M., Luján, I.: Reduction of homogeneous Riemannian structures, Proc. Edinb. Math. Soc. (2) 58 (1), 81-106 (2015).
  • [43] Chen, B. Y., Vanhecke, L.: Isometric, holomorphic and symplectic reflections, Geom. Dedicata 29 (3), 259-277 (1989).
  • [44] Chinea, D., Gonzalez, C.: An example of an almost cosymplectic homogeneous manifolds, Differential Geometry Peñiscola 1985, Lecture Notes in Math. 1209, 133-142 (1986).
  • [45] Chinea, D., Gonzalez, C.: A classification of almost contact metric manifolds, Ann. Mat. Pura Appl. (4) 156, 15-36 (1990).
  • [46] Chinea, D., Gonzalez, C.: Classification of almost contact metric structures, Rev. Roum. Math. Pures Appl. 37 (3), 199–211 (1992).
  • [47] Cho, J. T.: On some classes of almost contact metric manifolds, Tsukuba J. Math. 19 (1), 201-217 (1995).
  • [48] Cho, J. T., Inoguchi, J.: Pseudo-symmetric contact 3-manifolds, J. Korean Math. Soc. 42 (5), 913-932 (2005).
  • [49] Cho, J. T., Inoguchi, J.: Pseudo-symmetric contact 3-manifolds. II. When is the tangent sphere bundle over a surface pseudo-symmetric ?, Note Mat. 27 (1), 119-129 (2007).
  • [50] Cho, J. T., Inoguchi, J.: Curvatures and symmetries of tangent sphere bundles, Houston J. Math. 37 (4), 1125-1142.
  • [51] Cho, J. T., Inoguchi, J., Lee, J.-E.: Pseudo-symmetric contact 3-manifolds. III, Colloq. Math. 114 (1), 77–98 (2009).
  • [52] Cleyton, R., Moroianu, A., Semmelmann, U.: Metric connections with parallel skew-symmetric torsion, Adv. Math. 378, 107519 (2021).
  • [53] D’Atri, J. E., Nickerson, H. K.: Geodesic symmetries in spaces with special curvature tensor, J. Diff. Geom. 9, 251-262 (1974).
  • [54] D’Atri, J. E., Nickerson, H. K.: Geodesic spheres and symmetries in naturally reductive homogeneous spaces, Michigan Math. J. 22, 71-76 (1975).
  • [55] D’Atri, J. E., Ziller, W.: Naturally Reductive Metrics and Einstein Metrics on Compact Lie Groups, Mem. Am. Math. Soc. 215 (1979).
  • [56] De Nicola, A., Dileo, G., Yudin, I.: On nearly Sasakian and nearly cosymplectic manifolds, Ann. Mat. Pura Appl. (4) 197 (1), 127-138 (2018).
  • [57] Dileo, G., Lotta, A.: A classification of spherical symmetric CR manifolds, Bull. Aust. Math. Soc. 80, 251-274 (2009).
  • [58] Dombrowski, P.: On the geometry of the tangent bundle, J. Reine Angew. Math. 210, 73-88 (1962).
  • [59] Dorfmeister, J. F., Inoguchi, J., Kobayashi, S.-P.: Constant mean curvature surfaces in hyperbolic 3-space via loop groups, J. Reine Angew. Math. 686 (1), 1-36 (2014).
  • [60] Dorfmeister, J. F., Inoguchi, J., Kobayashi, S.-P.: A loop group method for affine harmonic maps into Lie groups, Adv. Math. 298, 207-253 (2016).
  • [61] Dorfmeister, J. F., Inoguchi, J., Kobayashi, S.-P.: A loop group method for minimal surfaces in the three-dimensional Heisenberg group, Asian J. Math. 20 (3), 409-448 (2016).
  • [62] Draper, C., Garvín, A., Palomo, F. J.: Invariant affine connections on odd-dimensional spheres, Ann. Glob. Anal. Geom. 49, 213-251 (2016).
  • [63] Eliashberg, Ya.: Contact 3-manifolds twenty years since J. Martinet’s work, Ann. l’institut Fourier 42 (1-2), 165-192 (1992).
  • [64] Erjavec, Z., Inoguchi, J.: Geodesics and magnetic curves in the 4-dim almost Kähler model space F4, Complex Manifolds 11, Article ID 20240001, 33 p. (2024).
  • [65] Falbel, E., Gorodski, C.: On contact sub-Riemannian symmetric spaces, Ann. Sci. Éc.Norm. Supér. (4) 28 (5), 571–589 (1995).
  • [66] Falbel, E., Gorodski, C.: Sub-Riemannian homogeneous spaces in dimensions 3 and 4, Geom. Dedicata 62 (3), 227-252 (1996).
  • [67] Falbel, E., Gorodski, C., Veloso, J. M.: Conformal sub-Riemannian geometry in dimension 3, Mat. Contemp. 9, 61-73 (1995).
  • [68] Ferus, D., Pinkall, U.: Constant curvature 2-spheres in the 4-sphere, Math. Z. 200 (2), 265-271 (1989).
  • [69] Fino, A.: Almost contact homogeneous manifolds, Riv. Mat. Univ. Parma (5) 3, 321-332 (1994).
  • [70] Fino, A.: Almost contact homogeneous structures, Boll. Un. Mat. Ital. A (7) 9, 299–311 (1995).
  • [71] Fino, A., Grantcharov, G.: Properties of manifolds with skew-symmetric torsion and special holonomy, Adv. Math. 189 (2), 439-450 (2004).
  • [72] Foreman, B. J.: K-contact Lie groups of dimension five or greater, Kodai Math. J. 34 (1), 79-84 (2011).
  • [73] Friedrich, T., Ivanov, S.: Parallel spinors and connections with skew-symmetric torsion in string theory, Asian J. Math. 6 (2), 303-335 (2002).
  • [74] Friedrich, T., Ivanov, S.: Almost contact manifolds, connections with torsion, and parallel spinors, J. Reine Angew. Math. 559, 217-236 (2003).
  • [75] Fujioka, A., Inoguchi, J.: Spacelike surfaces with harmonic inverse mean curvature, J. Math. Sci. Univ. Tokyo 7, 657-698 (2000).
  • [76] Gadea, P. M., González-Dávila, J. C., Oubiña, J. A.: Cyclic metric Lie groups, Monatsh. Math. 176 (2), 219-239 (2015).
  • [77] Gadea, P. M., González-Dávila, J. C., Oubiña, J. A.: Cyclic homogeneous Riemannian manifolds, Ann. Mat. Pura Appl. (4) 195 (5), 1619-1637 (2016).
  • [78] Gadea, P. M., González-Dávila, J. C., Oubiña, J. A.: Homogeneous spin Riemannian manifolds with the simplest Dirac operator, Adv. Geom. 18 (3), 289-302 (2018).
  • [79] Gadea, P. M., Oubiña, J. A.: Homogeneous Riemannian structures on Berger 3-spheres, Proc. Edinb. Math. Soc. (2) 48, (2), 375-387 (2005).
  • [80] Gadea, P. M., Oubiña, J. A.: Homogeneous Kähler and Sasakian structures related to complex hyperbolic spaces, Proc. Edinb. Math. Soc. (2) 53 (2), 393-413 (2010).
  • [81] Geiges, G.: An Introduction to Contact Topology, Cambridge Studies in Advanced Mathematics 109, (2008).
  • [82] Gray, A.: Riemannian manifolds with geodesic symmetries of order 3, J. Differ. Geom. 7, 343-369 (1972).
  • [83] Gonzalez, C., Chinea, D.: Quasi-Sasakian homogeneous structures on the generalized Heisenberg group H(p, 1), Proc. Am. Math. Soc. 105, 173-184 (1989).
  • [84] Gordeeva, I.A., Pan’zhenskii, V.I., Stepanov, S.E.: Riemann–Cartan manifolds. J. Math. Sci. 169, 342-361 (2010).
  • [85] Gordon, C. S.: Naturally reductive homogeneous Riemannian manifolds, Canadian J. Math. 37 (3), 467-487 (1985).
  • [86] Ha, K.Y., Lee, J.B.: Left invariant metrics and curvatures on simply connected three-dimensional Lie groups, Math. Nachr. 282 (6), 868-898 (2009).
  • [87] Halverscheid, S., Iannuzzi, A.: On naturally reductive left-invariant metrics of SL(2,R), Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 5 (2), 171-187 (2006).
  • [88] Hasegawa, Y.: C-flows on a Lie group for Euler equations, Nagoya Math. J. 40, 67-84 (1970).
  • [89] Hassani M., Ahmadi, P.: Isometric actions on the four dimensional Minkowski spacetime, Differential Geom. Appl. 88, Article number 102007, (2023).
  • [90] Hatakeyama, Y.: Some notes on differentiable manifolds with almost contact structures, Tôhoku Math. J. (2) 15, 176-181 (1963).
  • [91] Heintze, E.: On homogeneous manifolds of negative curvature, Math. Ann. 211, 23-34 (1974).
  • [92] Helgason, S.: Differential geometry, Lie groups, and symmetric spaces, Graduate Studies in Mathematics 34, American Mathematical Society (2001).
  • [93] Hsu, C.: On some structures which are similar to the quaternion structure, Tôhoku Math. J. (2) 12, 403–428 (1960).
  • [94] Inoguchi, J.: Timelike surfaces of constant mean curvature in Minkowski 3-space, Tokyo J. Math. 21, 141-152 (1998).
  • [95] Inoguchi, J.: Minimal surfaces in 3-dimensional solvable Lie groups, Chinese Ann. Math. B. 24, 73-84 (2003).
  • [96] Inoguchi, J.: Invariant minimal surfaces in real special linear group of degree 2, Ital. J. Pure Appl. 16, 61-80 (2004).
  • [97] Inoguchi, J.: Minimal surfaces in 3-dimensional solvable Lie groups II, Bull. Austral. Math. Soc. 73, 365-374 (2006).
  • [98] Inoguchi, J.: Pseudo-symmetric Lie groups of dimension 3, Bull. Fac. Edu. Utsunomiya Univ. Sect. 2 57, 1-5 (2007). http://hdl.handle.net/10241/00004810
  • [99] Inoguchi, J.: On homogeneous contact 3-manifolds, Bull. Fac. Edu. Utsunomiya Univ. Sect. 2 59, 1-12 (2009). http://hdl.handle.net/10241/00004788
  • [100] Inoguchi, J.: A note on almost contact Riemannian 3-manifolds, Bull. Yamagata Univ. Nat. Sci. 17 (1), 1-6 (2010).
  • [101] Inoguchi, J.: A note on almost contact Riemannian 3-manifolds. II, Bull. Korean Math. Soc. 54 (1), 85-97 (2017).
  • [102] Inoguchi, J.: Characteristic Jacobi operator on almost cosymplectic 3-manifolds, Internat. Elect. J. Geom. 12 (2), 276-299 (2019).
  • [103] Inoguchi, J.: Characteristic Jacobi operator on almost Kenmotsu 3-manifolds, Internat. Elect. J. Geom. 16 (2), 464–525 (2023).
  • [104] Inoguchi, J.: Differential geometry of the unit tangent sphere bundle over the 3-sphere, in preparation.
  • [105] Inoguchi, J., Kumamoto, T., Ohsugi, N., Suyama, Y.: Differential Geometry of curves and surfaces in 3-dimensional homogeneous spaces I, Fukuoka Univ. Sci. Rep., 29 (2), 155-182 (1999).
  • [106] Inoguchi, J., Kumamoto, T., Ohsugi, N., Suyama, Y.: Differential Geometry of curves and surfaces in 3-dimensional homogeneous spaces II, Fukuoka Univ. Sci. Rep., 30 (1), 17-48 (2000).
  • [107] Inoguchi, J., Kumamoto, T., Ohsugi, N., Suyama, Y.: Differential Geometry of curves and surfaces in 3-dimensional homogeneous spaces III, Fukuoka Univ. Sci. Rep., 30 (20), 130-160 (2000).
  • [108] Inoguchi, J., Kumamoto, T., Ohsugi, N., Suyama, Y.: Differential Geometry of curves and surfaces in 3-dimensional homogeneous spaces IV, Fukuoka Univ. Sci. Rep., 30 (20), 161-168 (2000).
  • [109] Inoguchi, J., Kuwabara, K., Naitoh, H.: Grassmann geometry on the 3-dimensional Heisenberg group, Hokkaido Math. J. 34 (2), 375-391 (2005).
  • [110] Inoguchi, J., Lee, J,-E.: Affine biharmonic curves in 3-dimensional homogeneous geometries, Mediterr. J. Math. 10 (2013), 571-592 (2013).
  • [111] Inoguchi, J., Lee, S.: A Weierstrass representation for minimal surfaces in Sol., Proc. Am. Math. Soc. 136, 2209-2216 (2008).
  • [112] Inoguchi, J., Munteanu, M. I.: Periodic magnetic curves in Berger spheres, Tôhoku Math. J. (2) 69 (1), 113–128 (2017).
  • [113] Inoguchi, J., Munteanu, M. I.: Magnetic curves in tangent sphere bundles. II, J. Math. Anal. Appl. 466 (2), 1570-1581.
  • [114] Inoguchi, J., Munteanu, M. I.: Magnetic curves in the real special linear group, Adv. Theor. Math. Phys. 23 (8), 2161-2205 (2019).
  • [115] Inoguchi, J., Munteanu, M. I.: Magnetic curves in tangent sphere bundles, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 113 (3), 2087-2112 (2019).
  • [116] Inoguchi, J., Munteanu, M. I.: Homogeneity of magnetic trajectories in the real special linear group, Proc. Am. Math. Soc. 152 (3), 1287–1300, (2024).
  • [117] Inoguchi, J., Munteanu, M. I.: Magnetic curves in tangent sphere bundles. III, submitted.
  • [118] Inoguchi, J., Munteanu, M. I.: Homogeneity of magnetic trajectories in the Berger sphere, submitted.
  • [119] Inoguchi, J., Munteanu, M. I.: The oscillator group and homogeneous magnetic trajectories in the Heisenberg group, submitted.
  • [120] Inoguchi, J., Naitoh, H.: Grassmann geometry on the 3-dimensional unimodular Lie groups I, Hokkaido Math. J. 38 (3), 427-496 (2009).
  • [121] Inoguchi, J., Naitoh, H.: Grassmann geometry on the 3-dimensional unimodular Lie groups II, Hokkaido Math. J. 40 (3), 411-429 (2011).
  • [122] Inoguchi, J., Naitoh, H.: Grassmann geometry on the 3-dimensional non-unimodular Lie groups, Hokkaido Math. J. 48 (2), 385-406 (2019).
  • [123] Inoguchi, J., Naitoh, H.: Grassmann geometry on H2 × R, submitted.
  • [124] Inoguchi, J., Ohno, Y.: Homogeneous structures of 3-dimensional Sasakian space forms, Tsukuba J. Math., to appear.
  • [125] Inoguchi, J., Ohno, Y.: Homogeneous structures of 3-dimensional Lie groups, submitted.
  • [126] Inoguti, J.: Rotations and φ-symmteric spaces, Math. J. Toyama Univ. 15, 123-130 (1992).
  • [127] Inoguti, J.: Nearly cosymplectic manifolds with rotations of order 3, preprint, (1993).
  • [128] Inoguti, J., Sekizawa, M.: Symmetries which preserve the characteristic vector fields of K-contact manifolds, Note Mat. 13 (2), 229-236 (1993).
  • [129] Ise, M., Takeuchi, M.: Lie groups I. Lie groups II. (Translated by Nomizu), Translations of Mathematical Monographs. 85, American Mathematical Society (1991).
  • [130] Itoh, M.: Invariant connections and Yang–Mills solutions, Trans. Am. Math. Soc. 267 (1981), 229-236 (1981).
  • [131] Janssense, D., Vanhecke, L.: Almost contact structures and curvature tensors, Kodai Math. J. 4, 1-27 (1981).
  • [132] Jiménez, J. A.: Existence of Hermitian n-symmetric spaces of non-commutative naturally reductive spaces, Math. Z. 196, 133-139 (1987). Addendum: Math. Z. 197, (3), 455-456 (1988).
  • [133] Jiménez, J. A.: The focal locus of a Riemannian 4-symmetric space, Can. Math. Bull. 31 (2), 175-181 (1988).
  • [134] Jiménez, J. A.: Riemannian 4-symmetric spaces, Trans. Am. Math. Soc. 306 (2), 715-734 (1988).
  • [135] Jiménez, J. A., Kowalski, O.: The classification of φ-symmetric Sasakian manifolds, Monatsh. Math. 115 (1-2), 83-98 (1993).
  • [136] Kato, T., Motomiya, K.: A study on certain homogeneous spaces, Tohôku Math. J. (2) 21, 1-20 (1969).
  • [137] Katsuda, A.: A pinching problem for locally homogeneous spaces, J. Math. Soc. Japan 41 (1), 57-74 (1989).
  • [138] Kaup, W., Zaitsev, D.: On symmetric Cauchy–Riemann manifolds, Adv. Math. 149, 145-181 (2000).
  • [139] Kenmotsu, K.: A class of almost contact Riemannian manifolds, Tôhoku Math. J. (2) 24 (1), 93-103 (1972).
  • [140] Kim, I. B., Takahashi, T.: Isoparametric hypersurfaces in a space form and metric connections, Tsukuba J. Math. 21 (1), 15-28 (1997).
  • [141] Klingenberg, W., Sasaki, S.: The tangent sphere bundle of a 2-sphere, Tôhoku Math. J. 27 (1), 45-57 (1975).
  • [142] Kriˇchenko, V. F.: On homogeneous Riemannian spaces with invariant tensor structures, Sov. Math. Dokl. 21, 734-737 (1980).
  • [143] Kobayashi, S.: Principal fibre bundles with the 1-dimensional toroidal group, Tôhoku Math. J. (2) 8, 29-45 (1956).
  • [144] Kobayashi, S.: Homogeneous Riemannian manifolds of negative curvature, Tôhoku Math. J. (2) 14, 413-415 (1962).
  • [145] Kobayashi, S., Nomizu, K.: Foundations of differential geometry. II, Interscience Tracts in Pure and Applied Mathematics 15, New York- London: Interscience Publishers, a division of John Wiley and Sons. (1969).
  • [146] Koda, T.,Watanabe, Y.: Homogeneous almost contact Riemannian manifolds and infinitesimal models, Boll. Un. Mat. Ital. (7) 11-B, suppl., 11-24 (1997).
  • [147] Kodama, H., Takahara, A., Tamaru, H.: The space of left-invariant metrics on a Lie group up to isometry and scaling, Manuscr. Math. 135 (1-2), 229-243 (2011).
  • [148] Kostant, B.: A characterization of invariant affine connections, Nagoya Math. J. 16, 35-50 (1960).
  • [149] Kowalski, O.: Generalized Symmetric Spaces, Lecture Notes in Math. 805, Springer Verlag (1980).
  • [150] Kowalski, O.: On strictly locally homogeneous Riemannian manifolds, Differential Geom. Appl. 7 (2), 131-137 (1997).
  • [151] Kowalski, O., Szenthe, J.: On the existence of homogeneous geodesics in homogeneous Riemannian manifolds, Geom. Dedicata 81, 209-214 (2000).
  • [152] Kowalski, O., Tricerri, F.: Riemannian manifolds of dimension n ≤ 4 admitting a homogeneous structure of class T2, Conf. Semin. Mat. Univ. Bari 222, 24 pages. (1987).
  • [153] Kowalski, O., Vanhecke, L.: A generalization of a theorem on naturally reductive homogeneous spaces, Proc. Am. Math. Soc. 91(3), 433-435 (1984).
  • [154] Kowalski, O., Vanhecke, L.: Riemannian manifolds with homogeneous geodesics, Boll. Unione Mat. Ital., VII. Ser., B 5 (1), 189-246 (1991).
  • [155] Kowalski, O., W˛egrzynowski, S.: A classification of five-dimensional ϕ-symmetric spaces, Tensor (N.S.) 46, 379-386 (1987).
  • [156] Kurihara, H., Tojo, K.: Involutions of compact Riemannian 4-symmetric spaces, Osaka J. Math. 45 (3), 643-689 (2008).
  • [157] Kurihara, H., Tojo, K.: Involutions on a compact 4-symmetric space of exceptional type, Osaka J. Math. 552 (4), 1101-1125 (2015).
  • [158] Kuwabara, K.: Grassmann geometry on the groups of rigid motions on the Euclidean and the Minkowski planes, Tsukuba J. Math. 30 (1), 49-59 (2006).
  • [159] Maeda, S., Tanabe, H.: Redefinition of Berger spheres from the viewpoint of submanifold geometry, Tôhoku Math. J., to appear.
  • [160] Martín Cabrera, F.: On the classification of almost contact metric manifolds, Differ. Geom. Appl. 64, 13-28 (2019).
  • [161] Matsuzoe, H., Inoguchi, J.: Statistical structures on tangent bundles, Appl. Sci. 5 (1), 55-57 (2003).
  • [162] Meeks, W.H., III. and Pérez, J., Constant mean curvature surfaces in metric Lie groups, Geometric Analysis: Partial Differential Equations and Surfaces, Contemp. Math. 570, 25-110 (2012).
  • [163] Milnor, J.: Curvatures of left invariant metrics on Lie groups, Adv. Math. 21, 293-329 (1976).
  • [164] Morimoto, A.: On normal almost contact structures, J. Math. Soc. Japan 15, 420-436 (1963).
  • [165] Motomiya, K.: A study on almost contact manifolds, Tôhoku Math. J. (2) 20, 73-90 (1968).
  • [166] Ni, L., Zheng, F.: On Hermitian manifolds whose Chern connection is Ambrose-Singer, Trans. Am. Math. Soc. 376 (9), 6681-6707 (2023).
  • [167] Nicolodi, L.; Vanhecke, L.: Rotations and Hermitian symmetric spaces, Monatsh. Math. 109 (4), 279-291 (1990).
  • [168] Nicolodi, L.; Vanhecke, L.: Rotations on a Riemannian manifold, Recent topics in differential geometry, Proc. Workshop/Puerto de la Cruz/Spain 1990, Ser. Inf. 32, 89-101 (1991).
  • [169] Nicolodi, L.; Vanhecke, L.: Harmonic and isometric rotations around a curve, Illinois J. Math. 37 (1), 85-100.
  • [170] Nomizu, K.: Invariant affine connections on homogeneous spaces, Am. J. Math. 76, 33-56 (1954).
  • [171] Ogiue, K.: On fiberings of almost contact manifolds, Kodai Math. Sem. Rep. 17 (1), 53-62 (1965).
  • [172] Ohnita, Y.: Canonical connections of a Sasakian manifold and invariant submanifolds with parallel second fundamental form, Proceedings of The 23rd International Differential Geometry Workshop on Submanifolds in Homogeneous Spaces and Related Topics 23, 31-40 (2021).
  • [173] Ohnita, Y.: Parallel Kähler submanifolds and R-spaces, Differential Geometry and Global Analysis in Honor of Tadashi Nagano, Contemp. Math. 777, 163-184 (2022).
  • [174] Ohno, Y.: Homogeneous structures on S2 × R and H2 × R, Tsukuba J. Math. 47 (2) 239-246 (2023).
  • [175] Okumura, M.: Some remarks on space with a certain contact structures, Tôhoku Math. J. (2) 14, 135-145 (1962).
  • [176] Olmos, C., Reggiani, S.: The skew-torsion holonomy theorem and naturally reductive spaces, J. Reine Angew. Math. 664, 29-53 (2012).
  • [177] Olmos, C., Reggiani, S.: A note on uniqueness of the canonical connection of a naturally reductive space, Monats. Math. 172 (3-4), 379–386 (2013).
  • [178] Olmos, C., Sánchez, C.: A geometric characterization of the orbits of s-representations, J. Reine Angew. Math. 420, 195-202 (1991).
  • [179] Olszak, Z.: Normal almost contact manifolds of dimension three, Ann. Pol. Math. 47, 42-50 (1986).
  • [180] Omori, H.: Infinite dimensional Lie Transformation Groups, Lecture Notes in Math. 427, Springer-Verlag, Berlin, (1974).
  • [181] Omori, H.: Infinite-dimensional Lie Groups, Translations of Mathematical Monographs 158, American Mathematical Society, Providence, RI, 1997.
  • [182] O’Neill, B.: Semi Riemannian Geometry with Application to Relativity, Academic Press, (1983).
  • [183] Pastore, A. M.: On the homogeneous Riemannian structures of type T1 ⊕ T3, Geom. Dedicata 30, 235-246 (1989).
  • [184] Pastore, A. M.: Reducibility of homogeneous Riemannian structures of the class T3 in low dimension, Geom. Dedicata 38 (2), 121-136 (1991).
  • [185] Pastore, A. M.: Canonical connections with an algebraic curvature tensor field on naturally reductive spaces, Geom. Dedicata 43 (3), 351-361 (1992).
  • [186] Pastore, A. M.: Homogeneous representations of the hyperbolic spaces related to homogeneous structures of class T1 ⊕ T3, Rend. Mat. Appl. (7) 12, (2), 445–453 (1992).
  • [187] Pastore, A. M., Verroca, F.: Some results on the homogeneous Riemannian structures of class T1 ⊕ T2, Rend. Mat. Appl. (7) 11 (1), 105-121 (1991).
  • [188] Patrangenaru, V.: Classifying 3- and 4-dimensional homogeneous Riemannian manifolds by Cartan triples, Pacific J. Math. 173, 511-532 (1996).
  • [189] Patrangenaru, V.: 5 dimensional strictly locally homogeneous Riemannian manifolds Period. Math. Hungar. 45 (1-2), 123-129(2002).
  • [190] Perrone, D.: Homogeneous contact Riemannian three-manifolds, Illinois J. Math. 42, 243-256 (1998).
  • [191] Perrone, D.: Classification of homogeneous almost cosymplectic three-manifolds, Differ. Geom. Appl. 30 (1), 49-58 (2012).
  • [192] Perrone, D.: Classification of homogeneous almost α-coKähler three-manifolds, Differ. Geom. Appl. 59, 66-90 (2018).
  • [193] Perrone, D.: Left-invariant almost α-coKähler structures on 3D semidirect product Lie groups, Int. J. Geom. Methods Mod. Phys. 16 (1), Article ID 1950011, 18 pp. (2019).
  • [194] Prüfer, F.: On compact Riemannian manifolds with volume-preserving symmetries, Ann. Glob. Anal. Geom. 7, 133-140 (1989).
  • [195] Rastrepina, A. O., Surina, O. P.: Invariant almost contact structures and connections on the Lobachevsky space (Russian), Izv. Vyssh. Uchebn. Zaved. Mat. (2023), (2), 47–56 (2023). English translation: Russian Math. (Iz. VUZ) 67 (2), 43-51 (2023).
  • [196] Salvai, M.: Spectra of unit tangent bundles of compact hyperbolic Riemann surfaces, Ann. Global Anal. Geom. 16, 357-370 (1998).
  • [197] Salvai, M.: Density of periodic geodesics in the unit tangent bundle of a compact hyperbolic surface, Rev. Uni. Mat. Argentina 41, 99-105 (1999).
  • [198] Salvai, M.: On the geometry at inifinity of the universal covering of Sl(2,R), Rend. Sem. Mat. Univ. Padova 104, 91-108 (2000).
  • [199] Sasaki, S.: On the differential geometry of tangent bundles of Riemannian manifolds, Tôhoku Math. J. 10, (3), 338-354 (1958).
  • [200] Sasaki, S.: On the differential geometry of tangent bundles of Riemannian manifolds II, Tôhoku Math. J. 14, (2), 146–155 (1962).
  • [201] Sasaki, S.: Notes on my mathematical works, Shigeo Sasaki. Selected Papers (S. Tachibana ed), Kinokuniya, 3–30, 1985.
  • [202] Sasaki, S., Hatakeyama, Y.: On differential manifolds with certain structures which are closely related to almost contact structure II, Tôhoku Math. J. (2) 13, 282-294 (1961).
  • [203] Schlarb, M.: Covariant derivatives on homogeneous spaces. Horizontal lifts and parallel transport, J. Geom. Anal. 34 (5), article number 150, 43 p., (2024).
  • [204] Sekigawa, K.: Notes on some curvature homogeneous spaces, Tensor, New Ser. 29, 255-258 (1975).
  • [205] Sekigawa, K.: 3-dimensional homogeneous Riemannian manifolds. I, Sci. Rep. Niigata Univ., Ser. A 14, 5-14 (1977).
  • [206] Sekigawa, K.: 3-dimensional homogeneous Riemannian manifolds. II, Sci. Rep. Niigata Univ., Ser. A 15, 71-78 (1978).
  • [207] Sekigawa, K.: Notes on homogeneous almost Hermitian manifolds, Hokkaido Math. J. 7, 206-213 (1978).
  • [208] Strichartz, R. S.:, Sub-Riemannian geometry, J. Differ. Geom. 24, 221-263 (1986). Correction ibid. 30 (2), 595-596 (1989).
  • [209] Takahashi, Toshio: Sasakian ϕ-symmetric spaces, Tôhoku Math. J. (2) 29, 91-113 (1977).
  • [210] Takahashi, Tsunoro: An isometric immersion of a homogeneous Riemannian manifold of dimension 3 in the hyperbolic space, J. Math. Soc. Japan 23, 649–661 (1971).
  • [211] Tamaru, H.: Riemannian g. o. spaces fibered over irreducible symmetric spaces, Osaka J. Math. 36, 835-851 (1999).
  • [212] Tanaka, N.: A Differential Geometric Study on Strongly Pseudo-Convex Manifolds, Lecture in Math. Kyoto Univ. 9, Kinokuniya Book Store (1975).
  • [213] Tanaka, N.: On non-degenerate real hypersurfaces, graded Lie algebras and Cartan connections, Japan. J. Math. 2, 131–190 (1976).
  • [214] Tanno, S.: Some transformations on manifolds with almost contact and contact metric structures I, II, Tôhoku Math. J. (2) 15, 140-147, 322-331 (1963).
  • [215] Tanno, S.: A theorem on regular vector fields and its applications to almost contact structures, Tôhoku Math. J. (2) 17 (3), 235-238 (1965) .
  • [216] Tanno, S.: Locally symmetric K-contact Riemannian manifolds, Proc. Japan Acad. 43, 581-583 (1967).
  • [217] Tanno, S.: The automorphism groups of almost contact Riemannian manifolds, Tôhoku Math. J. (2) 21, 21-38 (1969).
  • [218] Tanno, S.: Sasakian manifolds with constant φ-holomorphic sectional curvature, Tôhoku Math. J. (2) 21, 501-507 (1969).
  • [219] Tanno, S.: Variational problems on contact Riemannian manifolds, Trans, Am. Math. Soc. 314 (1), 349-379 (1989).
  • [220] Thurston, W. M.: Three-dimensional Geometry and Topology I (S. Levy ed.), Princeton Math. Series. 35, (1997).
  • [221] Tojo, K.: Kähler C-spaces and k-symmetric spaces, Osaka J. Math. 34 (4), 803-820 (1997).
  • [222] Tricerri, F., Vanhecke, L.: Homogeneous Structures on Riemannian Manifolds, Lecture Notes Series, London Math. Soc. 52, Cambridge Univ. Press (1983).
  • [223] Tricerri, F., Vanhecke, L.: Naturally reductive homogeneous spaces and generalized Heisenberg groups, Compositio Math. 52, 389-408 (1984).
  • [224] Vanhecke, L., Willmore, T.J.: Interaction of tubes and spheres, Math. Ann. 263, 31-42 (1983).
  • [225] Vezzoni, L.: Connections on contact manifolds and contact twistor space, Israel J. Math. 178, 253-267 (2010).
  • [226] Vranceanu, G.: Lecons de Geometrie Differentielle I, Ed. Acad. Rep. Roum, Bucarest, (1947).
  • [227] Watanabe, Y., Tricerri, F.: Characterizations of ϕ-symmetric spaces in terms of the canonical connection, C. R. Math. Rep. Acad. Sci. Canada 15 (2-3), 61-66 (1993).
  • [228] Webster, S. M.: Pseudohermitian structures on a real hypersurface, J. Differential Geom. 13, 25-41 (1978).
  • [229] Witte, D.: Cocompact subgroups of semisimple Lie groups, Lie algebra and related topics (Madison, WI, 1988), 309–313, Contemp. Math. 110, Am. Math. Soc., Providence, RI, 1990.

Homogeneous Riemannian Structures in Thurston Geometries and Contact Riemannian Geometries

Year 2024, Volume: 17 Issue: 2, 559 - 659
https://doi.org/10.36890/iejg.1464086

Abstract

We give explicit parametrizations for all the homogeneous Riemannian structures on model spaces of Thurston geometry. As an application, we give all the homogeneous contact metric structures on $3$-dimensional Sasakian space forms.

References

  • [1] Abe, K.: The classification of homogeneous structures on 3-dimensional space forms, Math. J. Okayama Univ. 28 (1), 173-189 (1986).
  • [2] Agricola, T, Friedrich, F.: On the holonomy of connections with skew-symmetric torsion, Math. Ann. 328,711-748 (2004).
  • [3] Alekseevsky, D., Gorodski, C.: Semisimple symmetric contact spaces, Indag. Math. New Ser. 31 (6), 1110-1133 (2020).
  • [4] Ambrose, W., Palais, R.S., Singer, I. M.: Sprays, Ann. Acad. Brasil. Ciˇencias 32, 163-178 (1960).
  • [5] Ambrose, W., Singer, I. M.: On homogeneous Riemannian manifolds, Duke Math. J. 25, 647-669 (1958).
  • [6] Auslander, L., Green, L., Hahn, F.: Flows on homogeneous spaces, with the assistance of L. Markus and W. Massey, and an appendix by L. Greenberg, Ann. of Math. Stud. 53 Princeton University Press, Princeton, NJ, 1963.
  • [7] Azencott, R., Wilson, E. N.: Homogeneous manifolds with negative curvature. I, Trans. Am. Math. Soc. 215, 323-362 (1976).
  • [8] Azencott, R., Wilson, E. N.: Homogeneous manifolds with negative curvature. II, Mem. Am. Math. Soc. 178 (1976).
  • [9] Bazdar, A., Teleman, A.: Infinitesimal homogeneity and bundles, Ann Glob Anal Geom 59, 197-231 (2021).
  • [10] Belkhelfa, M., Dillen, F., Inoguchi, J.: Surfaces with parallel second fundamental form in Bianchi-Cartan-Vranceanu spaces, PDE’s, Submanifolds and Affine Differential Geometry (Warsaw, 2000), Banach Center Publ., 57, 67-87, (2002).
  • [11] Bérad-Bergery, L., Bourguignon, J. P.: Laplacians and Riemannian submersions with totally geodesic fibers, Illinois J. Math. 26, 181-200 (1982).
  • [12] Berger, M.: Les Varietes Riemanniennes homogenes normlales simplement connexes a courbure strictement positive, Annli Scuola Norm. Sup. Pisa 15, 179-246 (1961).
  • [13] Bianchi, L.: Sugli sazi a tre dimensioni che ammettono un gruppo continuo di movimenti, Memorie di Matematica e di Fisica della Societa Italiana delle Scienze, Serie Tereza, Tomo XI, 267-352 (1898); English translation: On the three-dimensional spacse which admit a continuous group of motions, General Relativity and Gravitation 33 (12), 2171-2252 (2001).
  • [14] Bieliavsky, P., Falbel, E., Gorodski, C.: The classification of simply-connected contact sub-Riemannian symmetric spaces, Pacific J. Math. 188 (1), 65-82 (1999).
  • [15] Blair, D. E.: Almost contact manifolds with Killing structure tensors, Pacific J. Math. 39 (2), 285-292 (1971).
  • [16] Blair, D. E.: Contact Manifolds in Riemannian Geometry, Lecture Notes in Math. 509, Springer-Verlag, Berlin-Heidelberg-New-York, (1976).
  • [17] Blair, D. E.: Riemannian Geometry of Contact and Symplectic Manifolds, Progress in Math. 203, Birkhäuser, Boston, Basel, Berlin, (2002).
  • [18] Blair, D.E., Koufogiorgos, T., Papantoniou, B.J.: Contact metric manifolds satisfying a nullity condition, Israel J. Math. 91, 189-214 (1995).
  • [19] Blair, D.E., Showers, D.K.: Almost contact manifolds with Killing structure tensors. II, J. Differ. Geom. 9, 577-582 (1974).
  • [20] Blair, D. E., Vanhecke, L.: Symmetries and φ-symmetric spaces, Tôhoku Math. J. (2) 39 (3), 373-383 (1987).
  • [21] Blair, D. E., Vanhecke, L.: New characterizations of φ-symmetric spaces, Kodai Math. J. 10 (1), 102-107 (1987).
  • [22] Blair, D. E., Vanhecke, L.: Volume-preserving φ-geodesic symmetries, C. R. Math. Acad. Sci. Soc. R. Can. 9, 31-36 (1987).
  • [23] Boeckx, E.: A class of locally φ-symmetric contact metric spaces, Arch. Math. 72 (6), 466-472 (1999).
  • [24] Boeckx, E.: A full classification of contact metric (κ, μ)-spaces, Illinois J. Math. 44, 212-219 (2000).
  • [25] Boeckx, E., Bueken, P., Vanhecke, L.: Flow-symmetric Riemannian manifolds, Beitr. Algebra Geom. 40, (2), 459-474 (1999).
  • [26] Boeckx, E., Cho, J. T.: Locally symmetric contact metric manifolds, Monatsh. Math. 148 (4), 269-281 (2006).
  • [27] Boeckx, E., Cho, J. T.: Pseudo-Hermitian symmetries, Israel J. Math. 166, 125-145 (2008).
  • [28] Boothby, W. M., Wang, H. C.: On contact manifolds, Ann. Math. (2) 68, 721-734 (1958).
  • [29] Boyer, C. P., Galicki, K.: Sasakian Geometry, Oxford Mathematical Monographs, Oxford University Press, Oxford, 2008.
  • [30] Bueken, P., Vanhecke, L.: Geometry and symmetry on Sasakian manifolds, Tsukuba J. Math. 12 (2), 403-422 (1988).
  • [31] Bueken, P., Vanhecke, L.: Harmonic reflections on Sasakian manifolds, Math. J. Okayama Univ. 30, 187-197 (1988).
  • [32] Bueken, P., Vanhecke, L.: Reflections in K-contact geometry, Math. Rep. Toyama Univ. 12, 41-49 (1989).
  • [33] Bueken, P., Vanhecke, L.: Rotations and harmonicity in contact geometry, Rend. Mat. Appl., VII. 12 (1), 127-141 (1992).
  • [34] Burstall, F. E., Rawnsley, J. H.: Twistor Theory for Riemannian Symmetric Spaces With Applications to Harmonic Maps of Riemann Surfaces, Lecture Notes in Math. 1424, Springer Verlag, (1990).
  • [35] Cabrerizo, J. L. Fernández, M., Gómez, J. S.: On the existence of almost contact structure and the contact magnetic field, Acta Math. Hung. 125 (1-2), 191-199 (2009).
  • [36] Calvaruso, C., Castrillón López, M.: Pseudo-Riemannian Homogeneous Structures, Springer Verlag, (2019).
  • [37] Calvaruso, G., Fino, A.: Five-dimensional K-contact Lie algebras, Monatsh. Math. 167 (1), 35-59 (2012).
  • [38] Cartan, E.: Leçon sur la geometrie des espaces de Riemann, Second Edition, Gauthier-Villards, Paris, (1946).
  • [39] Calviño-Louzao, E., Ferreiro-Subrido, M., García-Río, E., Vázquez-Lorenzo, R.: Homogeneous Riemannian structures in dimension three, Rev. Real. Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. 117, Article number 70 (2023).
  • [40] Castrillón López, M., M. Gadea, P. M., Swann, A.: Homogeneous structures on real and complex hyperbolic spaces, Illinois J. Math. 53 (2), 561-574 (2009).
  • [41] Castrillón López, M., M. Gadea, P. M., Swann, A.: The homogeneous geometries of real hyperbolic space, Mediter. J. Math. 10 (2), 1011-1022 (2013).
  • [42] Castrillón López, M., Luján, I.: Reduction of homogeneous Riemannian structures, Proc. Edinb. Math. Soc. (2) 58 (1), 81-106 (2015).
  • [43] Chen, B. Y., Vanhecke, L.: Isometric, holomorphic and symplectic reflections, Geom. Dedicata 29 (3), 259-277 (1989).
  • [44] Chinea, D., Gonzalez, C.: An example of an almost cosymplectic homogeneous manifolds, Differential Geometry Peñiscola 1985, Lecture Notes in Math. 1209, 133-142 (1986).
  • [45] Chinea, D., Gonzalez, C.: A classification of almost contact metric manifolds, Ann. Mat. Pura Appl. (4) 156, 15-36 (1990).
  • [46] Chinea, D., Gonzalez, C.: Classification of almost contact metric structures, Rev. Roum. Math. Pures Appl. 37 (3), 199–211 (1992).
  • [47] Cho, J. T.: On some classes of almost contact metric manifolds, Tsukuba J. Math. 19 (1), 201-217 (1995).
  • [48] Cho, J. T., Inoguchi, J.: Pseudo-symmetric contact 3-manifolds, J. Korean Math. Soc. 42 (5), 913-932 (2005).
  • [49] Cho, J. T., Inoguchi, J.: Pseudo-symmetric contact 3-manifolds. II. When is the tangent sphere bundle over a surface pseudo-symmetric ?, Note Mat. 27 (1), 119-129 (2007).
  • [50] Cho, J. T., Inoguchi, J.: Curvatures and symmetries of tangent sphere bundles, Houston J. Math. 37 (4), 1125-1142.
  • [51] Cho, J. T., Inoguchi, J., Lee, J.-E.: Pseudo-symmetric contact 3-manifolds. III, Colloq. Math. 114 (1), 77–98 (2009).
  • [52] Cleyton, R., Moroianu, A., Semmelmann, U.: Metric connections with parallel skew-symmetric torsion, Adv. Math. 378, 107519 (2021).
  • [53] D’Atri, J. E., Nickerson, H. K.: Geodesic symmetries in spaces with special curvature tensor, J. Diff. Geom. 9, 251-262 (1974).
  • [54] D’Atri, J. E., Nickerson, H. K.: Geodesic spheres and symmetries in naturally reductive homogeneous spaces, Michigan Math. J. 22, 71-76 (1975).
  • [55] D’Atri, J. E., Ziller, W.: Naturally Reductive Metrics and Einstein Metrics on Compact Lie Groups, Mem. Am. Math. Soc. 215 (1979).
  • [56] De Nicola, A., Dileo, G., Yudin, I.: On nearly Sasakian and nearly cosymplectic manifolds, Ann. Mat. Pura Appl. (4) 197 (1), 127-138 (2018).
  • [57] Dileo, G., Lotta, A.: A classification of spherical symmetric CR manifolds, Bull. Aust. Math. Soc. 80, 251-274 (2009).
  • [58] Dombrowski, P.: On the geometry of the tangent bundle, J. Reine Angew. Math. 210, 73-88 (1962).
  • [59] Dorfmeister, J. F., Inoguchi, J., Kobayashi, S.-P.: Constant mean curvature surfaces in hyperbolic 3-space via loop groups, J. Reine Angew. Math. 686 (1), 1-36 (2014).
  • [60] Dorfmeister, J. F., Inoguchi, J., Kobayashi, S.-P.: A loop group method for affine harmonic maps into Lie groups, Adv. Math. 298, 207-253 (2016).
  • [61] Dorfmeister, J. F., Inoguchi, J., Kobayashi, S.-P.: A loop group method for minimal surfaces in the three-dimensional Heisenberg group, Asian J. Math. 20 (3), 409-448 (2016).
  • [62] Draper, C., Garvín, A., Palomo, F. J.: Invariant affine connections on odd-dimensional spheres, Ann. Glob. Anal. Geom. 49, 213-251 (2016).
  • [63] Eliashberg, Ya.: Contact 3-manifolds twenty years since J. Martinet’s work, Ann. l’institut Fourier 42 (1-2), 165-192 (1992).
  • [64] Erjavec, Z., Inoguchi, J.: Geodesics and magnetic curves in the 4-dim almost Kähler model space F4, Complex Manifolds 11, Article ID 20240001, 33 p. (2024).
  • [65] Falbel, E., Gorodski, C.: On contact sub-Riemannian symmetric spaces, Ann. Sci. Éc.Norm. Supér. (4) 28 (5), 571–589 (1995).
  • [66] Falbel, E., Gorodski, C.: Sub-Riemannian homogeneous spaces in dimensions 3 and 4, Geom. Dedicata 62 (3), 227-252 (1996).
  • [67] Falbel, E., Gorodski, C., Veloso, J. M.: Conformal sub-Riemannian geometry in dimension 3, Mat. Contemp. 9, 61-73 (1995).
  • [68] Ferus, D., Pinkall, U.: Constant curvature 2-spheres in the 4-sphere, Math. Z. 200 (2), 265-271 (1989).
  • [69] Fino, A.: Almost contact homogeneous manifolds, Riv. Mat. Univ. Parma (5) 3, 321-332 (1994).
  • [70] Fino, A.: Almost contact homogeneous structures, Boll. Un. Mat. Ital. A (7) 9, 299–311 (1995).
  • [71] Fino, A., Grantcharov, G.: Properties of manifolds with skew-symmetric torsion and special holonomy, Adv. Math. 189 (2), 439-450 (2004).
  • [72] Foreman, B. J.: K-contact Lie groups of dimension five or greater, Kodai Math. J. 34 (1), 79-84 (2011).
  • [73] Friedrich, T., Ivanov, S.: Parallel spinors and connections with skew-symmetric torsion in string theory, Asian J. Math. 6 (2), 303-335 (2002).
  • [74] Friedrich, T., Ivanov, S.: Almost contact manifolds, connections with torsion, and parallel spinors, J. Reine Angew. Math. 559, 217-236 (2003).
  • [75] Fujioka, A., Inoguchi, J.: Spacelike surfaces with harmonic inverse mean curvature, J. Math. Sci. Univ. Tokyo 7, 657-698 (2000).
  • [76] Gadea, P. M., González-Dávila, J. C., Oubiña, J. A.: Cyclic metric Lie groups, Monatsh. Math. 176 (2), 219-239 (2015).
  • [77] Gadea, P. M., González-Dávila, J. C., Oubiña, J. A.: Cyclic homogeneous Riemannian manifolds, Ann. Mat. Pura Appl. (4) 195 (5), 1619-1637 (2016).
  • [78] Gadea, P. M., González-Dávila, J. C., Oubiña, J. A.: Homogeneous spin Riemannian manifolds with the simplest Dirac operator, Adv. Geom. 18 (3), 289-302 (2018).
  • [79] Gadea, P. M., Oubiña, J. A.: Homogeneous Riemannian structures on Berger 3-spheres, Proc. Edinb. Math. Soc. (2) 48, (2), 375-387 (2005).
  • [80] Gadea, P. M., Oubiña, J. A.: Homogeneous Kähler and Sasakian structures related to complex hyperbolic spaces, Proc. Edinb. Math. Soc. (2) 53 (2), 393-413 (2010).
  • [81] Geiges, G.: An Introduction to Contact Topology, Cambridge Studies in Advanced Mathematics 109, (2008).
  • [82] Gray, A.: Riemannian manifolds with geodesic symmetries of order 3, J. Differ. Geom. 7, 343-369 (1972).
  • [83] Gonzalez, C., Chinea, D.: Quasi-Sasakian homogeneous structures on the generalized Heisenberg group H(p, 1), Proc. Am. Math. Soc. 105, 173-184 (1989).
  • [84] Gordeeva, I.A., Pan’zhenskii, V.I., Stepanov, S.E.: Riemann–Cartan manifolds. J. Math. Sci. 169, 342-361 (2010).
  • [85] Gordon, C. S.: Naturally reductive homogeneous Riemannian manifolds, Canadian J. Math. 37 (3), 467-487 (1985).
  • [86] Ha, K.Y., Lee, J.B.: Left invariant metrics and curvatures on simply connected three-dimensional Lie groups, Math. Nachr. 282 (6), 868-898 (2009).
  • [87] Halverscheid, S., Iannuzzi, A.: On naturally reductive left-invariant metrics of SL(2,R), Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 5 (2), 171-187 (2006).
  • [88] Hasegawa, Y.: C-flows on a Lie group for Euler equations, Nagoya Math. J. 40, 67-84 (1970).
  • [89] Hassani M., Ahmadi, P.: Isometric actions on the four dimensional Minkowski spacetime, Differential Geom. Appl. 88, Article number 102007, (2023).
  • [90] Hatakeyama, Y.: Some notes on differentiable manifolds with almost contact structures, Tôhoku Math. J. (2) 15, 176-181 (1963).
  • [91] Heintze, E.: On homogeneous manifolds of negative curvature, Math. Ann. 211, 23-34 (1974).
  • [92] Helgason, S.: Differential geometry, Lie groups, and symmetric spaces, Graduate Studies in Mathematics 34, American Mathematical Society (2001).
  • [93] Hsu, C.: On some structures which are similar to the quaternion structure, Tôhoku Math. J. (2) 12, 403–428 (1960).
  • [94] Inoguchi, J.: Timelike surfaces of constant mean curvature in Minkowski 3-space, Tokyo J. Math. 21, 141-152 (1998).
  • [95] Inoguchi, J.: Minimal surfaces in 3-dimensional solvable Lie groups, Chinese Ann. Math. B. 24, 73-84 (2003).
  • [96] Inoguchi, J.: Invariant minimal surfaces in real special linear group of degree 2, Ital. J. Pure Appl. 16, 61-80 (2004).
  • [97] Inoguchi, J.: Minimal surfaces in 3-dimensional solvable Lie groups II, Bull. Austral. Math. Soc. 73, 365-374 (2006).
  • [98] Inoguchi, J.: Pseudo-symmetric Lie groups of dimension 3, Bull. Fac. Edu. Utsunomiya Univ. Sect. 2 57, 1-5 (2007). http://hdl.handle.net/10241/00004810
  • [99] Inoguchi, J.: On homogeneous contact 3-manifolds, Bull. Fac. Edu. Utsunomiya Univ. Sect. 2 59, 1-12 (2009). http://hdl.handle.net/10241/00004788
  • [100] Inoguchi, J.: A note on almost contact Riemannian 3-manifolds, Bull. Yamagata Univ. Nat. Sci. 17 (1), 1-6 (2010).
  • [101] Inoguchi, J.: A note on almost contact Riemannian 3-manifolds. II, Bull. Korean Math. Soc. 54 (1), 85-97 (2017).
  • [102] Inoguchi, J.: Characteristic Jacobi operator on almost cosymplectic 3-manifolds, Internat. Elect. J. Geom. 12 (2), 276-299 (2019).
  • [103] Inoguchi, J.: Characteristic Jacobi operator on almost Kenmotsu 3-manifolds, Internat. Elect. J. Geom. 16 (2), 464–525 (2023).
  • [104] Inoguchi, J.: Differential geometry of the unit tangent sphere bundle over the 3-sphere, in preparation.
  • [105] Inoguchi, J., Kumamoto, T., Ohsugi, N., Suyama, Y.: Differential Geometry of curves and surfaces in 3-dimensional homogeneous spaces I, Fukuoka Univ. Sci. Rep., 29 (2), 155-182 (1999).
  • [106] Inoguchi, J., Kumamoto, T., Ohsugi, N., Suyama, Y.: Differential Geometry of curves and surfaces in 3-dimensional homogeneous spaces II, Fukuoka Univ. Sci. Rep., 30 (1), 17-48 (2000).
  • [107] Inoguchi, J., Kumamoto, T., Ohsugi, N., Suyama, Y.: Differential Geometry of curves and surfaces in 3-dimensional homogeneous spaces III, Fukuoka Univ. Sci. Rep., 30 (20), 130-160 (2000).
  • [108] Inoguchi, J., Kumamoto, T., Ohsugi, N., Suyama, Y.: Differential Geometry of curves and surfaces in 3-dimensional homogeneous spaces IV, Fukuoka Univ. Sci. Rep., 30 (20), 161-168 (2000).
  • [109] Inoguchi, J., Kuwabara, K., Naitoh, H.: Grassmann geometry on the 3-dimensional Heisenberg group, Hokkaido Math. J. 34 (2), 375-391 (2005).
  • [110] Inoguchi, J., Lee, J,-E.: Affine biharmonic curves in 3-dimensional homogeneous geometries, Mediterr. J. Math. 10 (2013), 571-592 (2013).
  • [111] Inoguchi, J., Lee, S.: A Weierstrass representation for minimal surfaces in Sol., Proc. Am. Math. Soc. 136, 2209-2216 (2008).
  • [112] Inoguchi, J., Munteanu, M. I.: Periodic magnetic curves in Berger spheres, Tôhoku Math. J. (2) 69 (1), 113–128 (2017).
  • [113] Inoguchi, J., Munteanu, M. I.: Magnetic curves in tangent sphere bundles. II, J. Math. Anal. Appl. 466 (2), 1570-1581.
  • [114] Inoguchi, J., Munteanu, M. I.: Magnetic curves in the real special linear group, Adv. Theor. Math. Phys. 23 (8), 2161-2205 (2019).
  • [115] Inoguchi, J., Munteanu, M. I.: Magnetic curves in tangent sphere bundles, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 113 (3), 2087-2112 (2019).
  • [116] Inoguchi, J., Munteanu, M. I.: Homogeneity of magnetic trajectories in the real special linear group, Proc. Am. Math. Soc. 152 (3), 1287–1300, (2024).
  • [117] Inoguchi, J., Munteanu, M. I.: Magnetic curves in tangent sphere bundles. III, submitted.
  • [118] Inoguchi, J., Munteanu, M. I.: Homogeneity of magnetic trajectories in the Berger sphere, submitted.
  • [119] Inoguchi, J., Munteanu, M. I.: The oscillator group and homogeneous magnetic trajectories in the Heisenberg group, submitted.
  • [120] Inoguchi, J., Naitoh, H.: Grassmann geometry on the 3-dimensional unimodular Lie groups I, Hokkaido Math. J. 38 (3), 427-496 (2009).
  • [121] Inoguchi, J., Naitoh, H.: Grassmann geometry on the 3-dimensional unimodular Lie groups II, Hokkaido Math. J. 40 (3), 411-429 (2011).
  • [122] Inoguchi, J., Naitoh, H.: Grassmann geometry on the 3-dimensional non-unimodular Lie groups, Hokkaido Math. J. 48 (2), 385-406 (2019).
  • [123] Inoguchi, J., Naitoh, H.: Grassmann geometry on H2 × R, submitted.
  • [124] Inoguchi, J., Ohno, Y.: Homogeneous structures of 3-dimensional Sasakian space forms, Tsukuba J. Math., to appear.
  • [125] Inoguchi, J., Ohno, Y.: Homogeneous structures of 3-dimensional Lie groups, submitted.
  • [126] Inoguti, J.: Rotations and φ-symmteric spaces, Math. J. Toyama Univ. 15, 123-130 (1992).
  • [127] Inoguti, J.: Nearly cosymplectic manifolds with rotations of order 3, preprint, (1993).
  • [128] Inoguti, J., Sekizawa, M.: Symmetries which preserve the characteristic vector fields of K-contact manifolds, Note Mat. 13 (2), 229-236 (1993).
  • [129] Ise, M., Takeuchi, M.: Lie groups I. Lie groups II. (Translated by Nomizu), Translations of Mathematical Monographs. 85, American Mathematical Society (1991).
  • [130] Itoh, M.: Invariant connections and Yang–Mills solutions, Trans. Am. Math. Soc. 267 (1981), 229-236 (1981).
  • [131] Janssense, D., Vanhecke, L.: Almost contact structures and curvature tensors, Kodai Math. J. 4, 1-27 (1981).
  • [132] Jiménez, J. A.: Existence of Hermitian n-symmetric spaces of non-commutative naturally reductive spaces, Math. Z. 196, 133-139 (1987). Addendum: Math. Z. 197, (3), 455-456 (1988).
  • [133] Jiménez, J. A.: The focal locus of a Riemannian 4-symmetric space, Can. Math. Bull. 31 (2), 175-181 (1988).
  • [134] Jiménez, J. A.: Riemannian 4-symmetric spaces, Trans. Am. Math. Soc. 306 (2), 715-734 (1988).
  • [135] Jiménez, J. A., Kowalski, O.: The classification of φ-symmetric Sasakian manifolds, Monatsh. Math. 115 (1-2), 83-98 (1993).
  • [136] Kato, T., Motomiya, K.: A study on certain homogeneous spaces, Tohôku Math. J. (2) 21, 1-20 (1969).
  • [137] Katsuda, A.: A pinching problem for locally homogeneous spaces, J. Math. Soc. Japan 41 (1), 57-74 (1989).
  • [138] Kaup, W., Zaitsev, D.: On symmetric Cauchy–Riemann manifolds, Adv. Math. 149, 145-181 (2000).
  • [139] Kenmotsu, K.: A class of almost contact Riemannian manifolds, Tôhoku Math. J. (2) 24 (1), 93-103 (1972).
  • [140] Kim, I. B., Takahashi, T.: Isoparametric hypersurfaces in a space form and metric connections, Tsukuba J. Math. 21 (1), 15-28 (1997).
  • [141] Klingenberg, W., Sasaki, S.: The tangent sphere bundle of a 2-sphere, Tôhoku Math. J. 27 (1), 45-57 (1975).
  • [142] Kriˇchenko, V. F.: On homogeneous Riemannian spaces with invariant tensor structures, Sov. Math. Dokl. 21, 734-737 (1980).
  • [143] Kobayashi, S.: Principal fibre bundles with the 1-dimensional toroidal group, Tôhoku Math. J. (2) 8, 29-45 (1956).
  • [144] Kobayashi, S.: Homogeneous Riemannian manifolds of negative curvature, Tôhoku Math. J. (2) 14, 413-415 (1962).
  • [145] Kobayashi, S., Nomizu, K.: Foundations of differential geometry. II, Interscience Tracts in Pure and Applied Mathematics 15, New York- London: Interscience Publishers, a division of John Wiley and Sons. (1969).
  • [146] Koda, T.,Watanabe, Y.: Homogeneous almost contact Riemannian manifolds and infinitesimal models, Boll. Un. Mat. Ital. (7) 11-B, suppl., 11-24 (1997).
  • [147] Kodama, H., Takahara, A., Tamaru, H.: The space of left-invariant metrics on a Lie group up to isometry and scaling, Manuscr. Math. 135 (1-2), 229-243 (2011).
  • [148] Kostant, B.: A characterization of invariant affine connections, Nagoya Math. J. 16, 35-50 (1960).
  • [149] Kowalski, O.: Generalized Symmetric Spaces, Lecture Notes in Math. 805, Springer Verlag (1980).
  • [150] Kowalski, O.: On strictly locally homogeneous Riemannian manifolds, Differential Geom. Appl. 7 (2), 131-137 (1997).
  • [151] Kowalski, O., Szenthe, J.: On the existence of homogeneous geodesics in homogeneous Riemannian manifolds, Geom. Dedicata 81, 209-214 (2000).
  • [152] Kowalski, O., Tricerri, F.: Riemannian manifolds of dimension n ≤ 4 admitting a homogeneous structure of class T2, Conf. Semin. Mat. Univ. Bari 222, 24 pages. (1987).
  • [153] Kowalski, O., Vanhecke, L.: A generalization of a theorem on naturally reductive homogeneous spaces, Proc. Am. Math. Soc. 91(3), 433-435 (1984).
  • [154] Kowalski, O., Vanhecke, L.: Riemannian manifolds with homogeneous geodesics, Boll. Unione Mat. Ital., VII. Ser., B 5 (1), 189-246 (1991).
  • [155] Kowalski, O., W˛egrzynowski, S.: A classification of five-dimensional ϕ-symmetric spaces, Tensor (N.S.) 46, 379-386 (1987).
  • [156] Kurihara, H., Tojo, K.: Involutions of compact Riemannian 4-symmetric spaces, Osaka J. Math. 45 (3), 643-689 (2008).
  • [157] Kurihara, H., Tojo, K.: Involutions on a compact 4-symmetric space of exceptional type, Osaka J. Math. 552 (4), 1101-1125 (2015).
  • [158] Kuwabara, K.: Grassmann geometry on the groups of rigid motions on the Euclidean and the Minkowski planes, Tsukuba J. Math. 30 (1), 49-59 (2006).
  • [159] Maeda, S., Tanabe, H.: Redefinition of Berger spheres from the viewpoint of submanifold geometry, Tôhoku Math. J., to appear.
  • [160] Martín Cabrera, F.: On the classification of almost contact metric manifolds, Differ. Geom. Appl. 64, 13-28 (2019).
  • [161] Matsuzoe, H., Inoguchi, J.: Statistical structures on tangent bundles, Appl. Sci. 5 (1), 55-57 (2003).
  • [162] Meeks, W.H., III. and Pérez, J., Constant mean curvature surfaces in metric Lie groups, Geometric Analysis: Partial Differential Equations and Surfaces, Contemp. Math. 570, 25-110 (2012).
  • [163] Milnor, J.: Curvatures of left invariant metrics on Lie groups, Adv. Math. 21, 293-329 (1976).
  • [164] Morimoto, A.: On normal almost contact structures, J. Math. Soc. Japan 15, 420-436 (1963).
  • [165] Motomiya, K.: A study on almost contact manifolds, Tôhoku Math. J. (2) 20, 73-90 (1968).
  • [166] Ni, L., Zheng, F.: On Hermitian manifolds whose Chern connection is Ambrose-Singer, Trans. Am. Math. Soc. 376 (9), 6681-6707 (2023).
  • [167] Nicolodi, L.; Vanhecke, L.: Rotations and Hermitian symmetric spaces, Monatsh. Math. 109 (4), 279-291 (1990).
  • [168] Nicolodi, L.; Vanhecke, L.: Rotations on a Riemannian manifold, Recent topics in differential geometry, Proc. Workshop/Puerto de la Cruz/Spain 1990, Ser. Inf. 32, 89-101 (1991).
  • [169] Nicolodi, L.; Vanhecke, L.: Harmonic and isometric rotations around a curve, Illinois J. Math. 37 (1), 85-100.
  • [170] Nomizu, K.: Invariant affine connections on homogeneous spaces, Am. J. Math. 76, 33-56 (1954).
  • [171] Ogiue, K.: On fiberings of almost contact manifolds, Kodai Math. Sem. Rep. 17 (1), 53-62 (1965).
  • [172] Ohnita, Y.: Canonical connections of a Sasakian manifold and invariant submanifolds with parallel second fundamental form, Proceedings of The 23rd International Differential Geometry Workshop on Submanifolds in Homogeneous Spaces and Related Topics 23, 31-40 (2021).
  • [173] Ohnita, Y.: Parallel Kähler submanifolds and R-spaces, Differential Geometry and Global Analysis in Honor of Tadashi Nagano, Contemp. Math. 777, 163-184 (2022).
  • [174] Ohno, Y.: Homogeneous structures on S2 × R and H2 × R, Tsukuba J. Math. 47 (2) 239-246 (2023).
  • [175] Okumura, M.: Some remarks on space with a certain contact structures, Tôhoku Math. J. (2) 14, 135-145 (1962).
  • [176] Olmos, C., Reggiani, S.: The skew-torsion holonomy theorem and naturally reductive spaces, J. Reine Angew. Math. 664, 29-53 (2012).
  • [177] Olmos, C., Reggiani, S.: A note on uniqueness of the canonical connection of a naturally reductive space, Monats. Math. 172 (3-4), 379–386 (2013).
  • [178] Olmos, C., Sánchez, C.: A geometric characterization of the orbits of s-representations, J. Reine Angew. Math. 420, 195-202 (1991).
  • [179] Olszak, Z.: Normal almost contact manifolds of dimension three, Ann. Pol. Math. 47, 42-50 (1986).
  • [180] Omori, H.: Infinite dimensional Lie Transformation Groups, Lecture Notes in Math. 427, Springer-Verlag, Berlin, (1974).
  • [181] Omori, H.: Infinite-dimensional Lie Groups, Translations of Mathematical Monographs 158, American Mathematical Society, Providence, RI, 1997.
  • [182] O’Neill, B.: Semi Riemannian Geometry with Application to Relativity, Academic Press, (1983).
  • [183] Pastore, A. M.: On the homogeneous Riemannian structures of type T1 ⊕ T3, Geom. Dedicata 30, 235-246 (1989).
  • [184] Pastore, A. M.: Reducibility of homogeneous Riemannian structures of the class T3 in low dimension, Geom. Dedicata 38 (2), 121-136 (1991).
  • [185] Pastore, A. M.: Canonical connections with an algebraic curvature tensor field on naturally reductive spaces, Geom. Dedicata 43 (3), 351-361 (1992).
  • [186] Pastore, A. M.: Homogeneous representations of the hyperbolic spaces related to homogeneous structures of class T1 ⊕ T3, Rend. Mat. Appl. (7) 12, (2), 445–453 (1992).
  • [187] Pastore, A. M., Verroca, F.: Some results on the homogeneous Riemannian structures of class T1 ⊕ T2, Rend. Mat. Appl. (7) 11 (1), 105-121 (1991).
  • [188] Patrangenaru, V.: Classifying 3- and 4-dimensional homogeneous Riemannian manifolds by Cartan triples, Pacific J. Math. 173, 511-532 (1996).
  • [189] Patrangenaru, V.: 5 dimensional strictly locally homogeneous Riemannian manifolds Period. Math. Hungar. 45 (1-2), 123-129(2002).
  • [190] Perrone, D.: Homogeneous contact Riemannian three-manifolds, Illinois J. Math. 42, 243-256 (1998).
  • [191] Perrone, D.: Classification of homogeneous almost cosymplectic three-manifolds, Differ. Geom. Appl. 30 (1), 49-58 (2012).
  • [192] Perrone, D.: Classification of homogeneous almost α-coKähler three-manifolds, Differ. Geom. Appl. 59, 66-90 (2018).
  • [193] Perrone, D.: Left-invariant almost α-coKähler structures on 3D semidirect product Lie groups, Int. J. Geom. Methods Mod. Phys. 16 (1), Article ID 1950011, 18 pp. (2019).
  • [194] Prüfer, F.: On compact Riemannian manifolds with volume-preserving symmetries, Ann. Glob. Anal. Geom. 7, 133-140 (1989).
  • [195] Rastrepina, A. O., Surina, O. P.: Invariant almost contact structures and connections on the Lobachevsky space (Russian), Izv. Vyssh. Uchebn. Zaved. Mat. (2023), (2), 47–56 (2023). English translation: Russian Math. (Iz. VUZ) 67 (2), 43-51 (2023).
  • [196] Salvai, M.: Spectra of unit tangent bundles of compact hyperbolic Riemann surfaces, Ann. Global Anal. Geom. 16, 357-370 (1998).
  • [197] Salvai, M.: Density of periodic geodesics in the unit tangent bundle of a compact hyperbolic surface, Rev. Uni. Mat. Argentina 41, 99-105 (1999).
  • [198] Salvai, M.: On the geometry at inifinity of the universal covering of Sl(2,R), Rend. Sem. Mat. Univ. Padova 104, 91-108 (2000).
  • [199] Sasaki, S.: On the differential geometry of tangent bundles of Riemannian manifolds, Tôhoku Math. J. 10, (3), 338-354 (1958).
  • [200] Sasaki, S.: On the differential geometry of tangent bundles of Riemannian manifolds II, Tôhoku Math. J. 14, (2), 146–155 (1962).
  • [201] Sasaki, S.: Notes on my mathematical works, Shigeo Sasaki. Selected Papers (S. Tachibana ed), Kinokuniya, 3–30, 1985.
  • [202] Sasaki, S., Hatakeyama, Y.: On differential manifolds with certain structures which are closely related to almost contact structure II, Tôhoku Math. J. (2) 13, 282-294 (1961).
  • [203] Schlarb, M.: Covariant derivatives on homogeneous spaces. Horizontal lifts and parallel transport, J. Geom. Anal. 34 (5), article number 150, 43 p., (2024).
  • [204] Sekigawa, K.: Notes on some curvature homogeneous spaces, Tensor, New Ser. 29, 255-258 (1975).
  • [205] Sekigawa, K.: 3-dimensional homogeneous Riemannian manifolds. I, Sci. Rep. Niigata Univ., Ser. A 14, 5-14 (1977).
  • [206] Sekigawa, K.: 3-dimensional homogeneous Riemannian manifolds. II, Sci. Rep. Niigata Univ., Ser. A 15, 71-78 (1978).
  • [207] Sekigawa, K.: Notes on homogeneous almost Hermitian manifolds, Hokkaido Math. J. 7, 206-213 (1978).
  • [208] Strichartz, R. S.:, Sub-Riemannian geometry, J. Differ. Geom. 24, 221-263 (1986). Correction ibid. 30 (2), 595-596 (1989).
  • [209] Takahashi, Toshio: Sasakian ϕ-symmetric spaces, Tôhoku Math. J. (2) 29, 91-113 (1977).
  • [210] Takahashi, Tsunoro: An isometric immersion of a homogeneous Riemannian manifold of dimension 3 in the hyperbolic space, J. Math. Soc. Japan 23, 649–661 (1971).
  • [211] Tamaru, H.: Riemannian g. o. spaces fibered over irreducible symmetric spaces, Osaka J. Math. 36, 835-851 (1999).
  • [212] Tanaka, N.: A Differential Geometric Study on Strongly Pseudo-Convex Manifolds, Lecture in Math. Kyoto Univ. 9, Kinokuniya Book Store (1975).
  • [213] Tanaka, N.: On non-degenerate real hypersurfaces, graded Lie algebras and Cartan connections, Japan. J. Math. 2, 131–190 (1976).
  • [214] Tanno, S.: Some transformations on manifolds with almost contact and contact metric structures I, II, Tôhoku Math. J. (2) 15, 140-147, 322-331 (1963).
  • [215] Tanno, S.: A theorem on regular vector fields and its applications to almost contact structures, Tôhoku Math. J. (2) 17 (3), 235-238 (1965) .
  • [216] Tanno, S.: Locally symmetric K-contact Riemannian manifolds, Proc. Japan Acad. 43, 581-583 (1967).
  • [217] Tanno, S.: The automorphism groups of almost contact Riemannian manifolds, Tôhoku Math. J. (2) 21, 21-38 (1969).
  • [218] Tanno, S.: Sasakian manifolds with constant φ-holomorphic sectional curvature, Tôhoku Math. J. (2) 21, 501-507 (1969).
  • [219] Tanno, S.: Variational problems on contact Riemannian manifolds, Trans, Am. Math. Soc. 314 (1), 349-379 (1989).
  • [220] Thurston, W. M.: Three-dimensional Geometry and Topology I (S. Levy ed.), Princeton Math. Series. 35, (1997).
  • [221] Tojo, K.: Kähler C-spaces and k-symmetric spaces, Osaka J. Math. 34 (4), 803-820 (1997).
  • [222] Tricerri, F., Vanhecke, L.: Homogeneous Structures on Riemannian Manifolds, Lecture Notes Series, London Math. Soc. 52, Cambridge Univ. Press (1983).
  • [223] Tricerri, F., Vanhecke, L.: Naturally reductive homogeneous spaces and generalized Heisenberg groups, Compositio Math. 52, 389-408 (1984).
  • [224] Vanhecke, L., Willmore, T.J.: Interaction of tubes and spheres, Math. Ann. 263, 31-42 (1983).
  • [225] Vezzoni, L.: Connections on contact manifolds and contact twistor space, Israel J. Math. 178, 253-267 (2010).
  • [226] Vranceanu, G.: Lecons de Geometrie Differentielle I, Ed. Acad. Rep. Roum, Bucarest, (1947).
  • [227] Watanabe, Y., Tricerri, F.: Characterizations of ϕ-symmetric spaces in terms of the canonical connection, C. R. Math. Rep. Acad. Sci. Canada 15 (2-3), 61-66 (1993).
  • [228] Webster, S. M.: Pseudohermitian structures on a real hypersurface, J. Differential Geom. 13, 25-41 (1978).
  • [229] Witte, D.: Cocompact subgroups of semisimple Lie groups, Lie algebra and related topics (Madison, WI, 1988), 309–313, Contemp. Math. 110, Am. Math. Soc., Providence, RI, 1990.
There are 229 citations in total.

Details

Primary Language English
Subjects Algebraic and Differential Geometry
Journal Section Research Article
Authors

Jun-ichi Inoguchi 0000-0002-6584-5739

Early Pub Date September 29, 2024
Publication Date
Submission Date April 3, 2024
Acceptance Date September 16, 2024
Published in Issue Year 2024 Volume: 17 Issue: 2

Cite

APA Inoguchi, J.-i. (2024). Homogeneous Riemannian Structures in Thurston Geometries and Contact Riemannian Geometries. International Electronic Journal of Geometry, 17(2), 559-659. https://doi.org/10.36890/iejg.1464086
AMA Inoguchi Ji. Homogeneous Riemannian Structures in Thurston Geometries and Contact Riemannian Geometries. Int. Electron. J. Geom. September 2024;17(2):559-659. doi:10.36890/iejg.1464086
Chicago Inoguchi, Jun-ichi. “Homogeneous Riemannian Structures in Thurston Geometries and Contact Riemannian Geometries”. International Electronic Journal of Geometry 17, no. 2 (September 2024): 559-659. https://doi.org/10.36890/iejg.1464086.
EndNote Inoguchi J-i (September 1, 2024) Homogeneous Riemannian Structures in Thurston Geometries and Contact Riemannian Geometries. International Electronic Journal of Geometry 17 2 559–659.
IEEE J.-i. Inoguchi, “Homogeneous Riemannian Structures in Thurston Geometries and Contact Riemannian Geometries”, Int. Electron. J. Geom., vol. 17, no. 2, pp. 559–659, 2024, doi: 10.36890/iejg.1464086.
ISNAD Inoguchi, Jun-ichi. “Homogeneous Riemannian Structures in Thurston Geometries and Contact Riemannian Geometries”. International Electronic Journal of Geometry 17/2 (September 2024), 559-659. https://doi.org/10.36890/iejg.1464086.
JAMA Inoguchi J-i. Homogeneous Riemannian Structures in Thurston Geometries and Contact Riemannian Geometries. Int. Electron. J. Geom. 2024;17:559–659.
MLA Inoguchi, Jun-ichi. “Homogeneous Riemannian Structures in Thurston Geometries and Contact Riemannian Geometries”. International Electronic Journal of Geometry, vol. 17, no. 2, 2024, pp. 559-, doi:10.36890/iejg.1464086.
Vancouver Inoguchi J-i. Homogeneous Riemannian Structures in Thurston Geometries and Contact Riemannian Geometries. Int. Electron. J. Geom. 2024;17(2):559-6.