Research Article
BibTex RIS Cite
Year 2024, Volume: 17 Issue: 2, 394 - 401, 27.10.2024
https://doi.org/10.36890/iejg.1470495

Abstract

References

  • [1] Blair D. E., On the geometric meaning of the Bochner Tensor, Geom. Dedicata 4, 33-38 (1975).
  • [2] Blair D.E., Koufogiorgos T., Papantoniou B. J., Contact metric manifolds satisfying a nullity condition, Israel Journal of Math. 91, 189-214 (1995).
  • [3] Blair D.E., Two remarks on contact metric structures, Tôhoku Math. J., 29, 319-324, (1977).
  • [4] Bochner S., Curvature and Betti numbers, Ann. of Math. (2) 50, 77-93 (1949).
  • [5] Boothby W. M., and Wang H. C., On contact manifolds, Ann. of Math. 68, 721-734 (1958).
  • [6] Endo H., On K-contact Riemannian manifolds with vanishing E-contact Bochner curvature tensor, Colloq. Math., Vol.LXII, no.2, 293-297 (1991).
  • [7] Hasegawa I. and Nakane T., On Sasakian manifolds with vanishing contact Bochner curvature tensor II, Hokkaido Math. J. 11 , 44-51 (1982).
  • [8] Ikawa T. and Kon M., Sasakian manifolds with vanishing contact Bochner curvature tensor and constant scalar curvature, Colloq. Math. 37, 113-122 (1977).
  • [9] Matsumoto M. and Chuman G., On the C-Bochner curvature tensor, TRU Math., 5 , 21-30 (1969).
  • [10] Papantoniou B. J., Contact Riemannian manifolds satisfying R(ξ,X) · R = 0 and ξ ∈ (`k,`μ)-nullity distribution, Yokohama Math. J., 40, 149-161 (1993).
  • [11] Shaikh A. A. and Baishya, K. K., On (`k,`μ)-contact metric manifolds, Diff. Geom.-Dynm. System, 8 , 253-261 (2006).
  • [12] Yano K., Differential geometry of anti-invariant submanifolds of a Sasakian manifold, Boll. Un. Mat. Ital., 12 , 279-296 (1975).
  • [13] Yano K., Anti-invariant submanifolds of a Sasakian manifold with vanishing contact Bochner curvature tensor, J. Diff. Geom., 12 , 153-170 (1977).

Generalized Extended $C$-Bochner Curvature Tensor on $(\grave{k},\grave{\mu})$-Contact Metric Manifolds

Year 2024, Volume: 17 Issue: 2, 394 - 401, 27.10.2024
https://doi.org/10.36890/iejg.1470495

Abstract

The object of the present paper is to study $(\grave{k},\grave{\mu})$-contact metric manifolds with generalized extended $C$-Bochner curvature tensor.

References

  • [1] Blair D. E., On the geometric meaning of the Bochner Tensor, Geom. Dedicata 4, 33-38 (1975).
  • [2] Blair D.E., Koufogiorgos T., Papantoniou B. J., Contact metric manifolds satisfying a nullity condition, Israel Journal of Math. 91, 189-214 (1995).
  • [3] Blair D.E., Two remarks on contact metric structures, Tôhoku Math. J., 29, 319-324, (1977).
  • [4] Bochner S., Curvature and Betti numbers, Ann. of Math. (2) 50, 77-93 (1949).
  • [5] Boothby W. M., and Wang H. C., On contact manifolds, Ann. of Math. 68, 721-734 (1958).
  • [6] Endo H., On K-contact Riemannian manifolds with vanishing E-contact Bochner curvature tensor, Colloq. Math., Vol.LXII, no.2, 293-297 (1991).
  • [7] Hasegawa I. and Nakane T., On Sasakian manifolds with vanishing contact Bochner curvature tensor II, Hokkaido Math. J. 11 , 44-51 (1982).
  • [8] Ikawa T. and Kon M., Sasakian manifolds with vanishing contact Bochner curvature tensor and constant scalar curvature, Colloq. Math. 37, 113-122 (1977).
  • [9] Matsumoto M. and Chuman G., On the C-Bochner curvature tensor, TRU Math., 5 , 21-30 (1969).
  • [10] Papantoniou B. J., Contact Riemannian manifolds satisfying R(ξ,X) · R = 0 and ξ ∈ (`k,`μ)-nullity distribution, Yokohama Math. J., 40, 149-161 (1993).
  • [11] Shaikh A. A. and Baishya, K. K., On (`k,`μ)-contact metric manifolds, Diff. Geom.-Dynm. System, 8 , 253-261 (2006).
  • [12] Yano K., Differential geometry of anti-invariant submanifolds of a Sasakian manifold, Boll. Un. Mat. Ital., 12 , 279-296 (1975).
  • [13] Yano K., Anti-invariant submanifolds of a Sasakian manifold with vanishing contact Bochner curvature tensor, J. Diff. Geom., 12 , 153-170 (1977).
There are 13 citations in total.

Details

Primary Language English
Subjects Algebraic and Differential Geometry
Journal Section Research Article
Authors

Ahmet Yıldız 0000-0002-9799-1781

Early Pub Date September 19, 2024
Publication Date October 27, 2024
Submission Date April 18, 2024
Acceptance Date July 11, 2024
Published in Issue Year 2024 Volume: 17 Issue: 2

Cite

APA Yıldız, A. (2024). Generalized Extended $C$-Bochner Curvature Tensor on $(\grave{k},\grave{\mu})$-Contact Metric Manifolds. International Electronic Journal of Geometry, 17(2), 394-401. https://doi.org/10.36890/iejg.1470495
AMA Yıldız A. Generalized Extended $C$-Bochner Curvature Tensor on $(\grave{k},\grave{\mu})$-Contact Metric Manifolds. Int. Electron. J. Geom. October 2024;17(2):394-401. doi:10.36890/iejg.1470495
Chicago Yıldız, Ahmet. “Generalized Extended $C$-Bochner Curvature Tensor on $(\grave{k},\grave{\mu})$-Contact Metric Manifolds”. International Electronic Journal of Geometry 17, no. 2 (October 2024): 394-401. https://doi.org/10.36890/iejg.1470495.
EndNote Yıldız A (October 1, 2024) Generalized Extended $C$-Bochner Curvature Tensor on $(\grave{k},\grave{\mu})$-Contact Metric Manifolds. International Electronic Journal of Geometry 17 2 394–401.
IEEE A. Yıldız, “Generalized Extended $C$-Bochner Curvature Tensor on $(\grave{k},\grave{\mu})$-Contact Metric Manifolds”, Int. Electron. J. Geom., vol. 17, no. 2, pp. 394–401, 2024, doi: 10.36890/iejg.1470495.
ISNAD Yıldız, Ahmet. “Generalized Extended $C$-Bochner Curvature Tensor on $(\grave{k},\grave{\mu})$-Contact Metric Manifolds”. International Electronic Journal of Geometry 17/2 (October 2024), 394-401. https://doi.org/10.36890/iejg.1470495.
JAMA Yıldız A. Generalized Extended $C$-Bochner Curvature Tensor on $(\grave{k},\grave{\mu})$-Contact Metric Manifolds. Int. Electron. J. Geom. 2024;17:394–401.
MLA Yıldız, Ahmet. “Generalized Extended $C$-Bochner Curvature Tensor on $(\grave{k},\grave{\mu})$-Contact Metric Manifolds”. International Electronic Journal of Geometry, vol. 17, no. 2, 2024, pp. 394-01, doi:10.36890/iejg.1470495.
Vancouver Yıldız A. Generalized Extended $C$-Bochner Curvature Tensor on $(\grave{k},\grave{\mu})$-Contact Metric Manifolds. Int. Electron. J. Geom. 2024;17(2):394-401.