Research Article
BibTex RIS Cite

Envelopes of Bisection Lines of Polygons

Year 2024, Volume: 17 Issue: 2, 421 - 436, 27.10.2024
https://doi.org/10.36890/iejg.1512613

Abstract

A bisection line divides a convex planar curve into two parts with equal areas. It is natural to study the envelope of these lines, which in general present singularities. The polygonal case is particularly interesting, since there are several different notions of a discrete envelope. In this paper, we study three different notions of discrete envelopes of bisection lines and the connections between them.

References

  • [1] D. Ball: Halving envelopes, The Mathematical Gazette, v.64, n.429, 166-173 (1980).
  • [2] Bruce, J.W., Giblin, P.J.: Curves and Singularities. Cambridge University Press, Second Edition (1992).
  • [3] M. Craizer, R.C. Teixeira and M.A.H.B. da Silva: Affine properties of convex equal-area polygons. Disc.Comp.Geometry, 48 (3), 580-595 (2012).
  • [4] M. Craizer, R.C. Teixeira and M.A.H.B. da Silva: Polygons with parallel opposite sides. Disc.Comp.Geometry, 50 (2), 474-490 (2013).
  • [5] J.A.Dunn, J.A. and Pretty, J.E.: Halving a triangle. The Mathematical Gazette, 56 (396), 105-108 (1972).
  • [6] Fechtor-Pradines, N.: Bisection envelopes. Involve J.Math., 8 (2), 307-328 (2015).
  • [7] Flanders, H., A proof of Minkowski’s inequality for convex curves. Amer. Math. Monthly 75, 581-593 (1968).
  • [8] Nishimura, T.: Envelopes of straight line families in the plane. Preprint arxiv:2307.07232 (2023).
Year 2024, Volume: 17 Issue: 2, 421 - 436, 27.10.2024
https://doi.org/10.36890/iejg.1512613

Abstract

References

  • [1] D. Ball: Halving envelopes, The Mathematical Gazette, v.64, n.429, 166-173 (1980).
  • [2] Bruce, J.W., Giblin, P.J.: Curves and Singularities. Cambridge University Press, Second Edition (1992).
  • [3] M. Craizer, R.C. Teixeira and M.A.H.B. da Silva: Affine properties of convex equal-area polygons. Disc.Comp.Geometry, 48 (3), 580-595 (2012).
  • [4] M. Craizer, R.C. Teixeira and M.A.H.B. da Silva: Polygons with parallel opposite sides. Disc.Comp.Geometry, 50 (2), 474-490 (2013).
  • [5] J.A.Dunn, J.A. and Pretty, J.E.: Halving a triangle. The Mathematical Gazette, 56 (396), 105-108 (1972).
  • [6] Fechtor-Pradines, N.: Bisection envelopes. Involve J.Math., 8 (2), 307-328 (2015).
  • [7] Flanders, H., A proof of Minkowski’s inequality for convex curves. Amer. Math. Monthly 75, 581-593 (1968).
  • [8] Nishimura, T.: Envelopes of straight line families in the plane. Preprint arxiv:2307.07232 (2023).
There are 8 citations in total.

Details

Primary Language English
Subjects Algebraic and Differential Geometry
Journal Section Research Article
Authors

Joel Marques Da Silva 0009-0007-6609-562X

Marcos Craizer 0000-0003-4477-8853

Early Pub Date September 19, 2024
Publication Date October 27, 2024
Submission Date July 8, 2024
Acceptance Date August 1, 2024
Published in Issue Year 2024 Volume: 17 Issue: 2

Cite

APA Marques Da Silva, J., & Craizer, M. (2024). Envelopes of Bisection Lines of Polygons. International Electronic Journal of Geometry, 17(2), 421-436. https://doi.org/10.36890/iejg.1512613
AMA Marques Da Silva J, Craizer M. Envelopes of Bisection Lines of Polygons. Int. Electron. J. Geom. October 2024;17(2):421-436. doi:10.36890/iejg.1512613
Chicago Marques Da Silva, Joel, and Marcos Craizer. “Envelopes of Bisection Lines of Polygons”. International Electronic Journal of Geometry 17, no. 2 (October 2024): 421-36. https://doi.org/10.36890/iejg.1512613.
EndNote Marques Da Silva J, Craizer M (October 1, 2024) Envelopes of Bisection Lines of Polygons. International Electronic Journal of Geometry 17 2 421–436.
IEEE J. Marques Da Silva and M. Craizer, “Envelopes of Bisection Lines of Polygons”, Int. Electron. J. Geom., vol. 17, no. 2, pp. 421–436, 2024, doi: 10.36890/iejg.1512613.
ISNAD Marques Da Silva, Joel - Craizer, Marcos. “Envelopes of Bisection Lines of Polygons”. International Electronic Journal of Geometry 17/2 (October 2024), 421-436. https://doi.org/10.36890/iejg.1512613.
JAMA Marques Da Silva J, Craizer M. Envelopes of Bisection Lines of Polygons. Int. Electron. J. Geom. 2024;17:421–436.
MLA Marques Da Silva, Joel and Marcos Craizer. “Envelopes of Bisection Lines of Polygons”. International Electronic Journal of Geometry, vol. 17, no. 2, 2024, pp. 421-36, doi:10.36890/iejg.1512613.
Vancouver Marques Da Silva J, Craizer M. Envelopes of Bisection Lines of Polygons. Int. Electron. J. Geom. 2024;17(2):421-36.