Research Article
BibTex RIS Cite

Year 2025, Volume: 18 Issue: 2, 396 - 402
https://doi.org/10.36890/iejg.1626396

Abstract

References

  • Baird, P. and Wood,J. C. :Harmonic morphisms between Riemannain manifolds. Clarendon Press, Oxford (2003).
  • Benkartab, A. and Mohammed Cherif, A.: New methods of construction for biharmonic maps, Kyungpook Math. J. 59(2019), 135–147.
  • Benkartab, A. and Mohammed Cherif, A.: Deformations of Metrics and Biharmonic Maps, Commun. Math. 28 (2020), 263–275.
  • Eells, J.and Lemaire, L.:A report on harmonic maps. Bull. London Math. Soc. 16, 1–68(1978).
  • Eells, J.and Lemaire,L.: Another report on harmonic maps. Bull. London Math. Soc. 20 , 385–524(1988).
  • Eells, J. and Sampson,J. H.: Harmonic mappings of Riemannian manifolds. Amer. J. Math. 86, 109–160(1964).
  • Merdji, B. and Mohammed Cherif, A.: New types of metrics deformations and applications to p-biharmonic maps. J. Indian Math. Soc. 90 (3-4) , 387–400(2023).
  • Udrişte, C.: Convex Functions and Optimization Methods on Riemannian Manifolds. Mathematics and Its Applications, Kluwer Academic Publishers: Dordrecht, The Netherlands, 1994.
  • Sakai, T.: Riemannian Geometry. Shokabo, Tokyo (1992). (in Japanese).
  • Topping, P. : Lectures on the Ricci Flow. Number 325 in London Mathematical Society Lecture Note Series. Cambridge University Press, October, 2006.

Geometry of Harmonic Identity Maps

Year 2025, Volume: 18 Issue: 2, 396 - 402
https://doi.org/10.36890/iejg.1626396

Abstract

An identity map $(M,g)\longrightarrow(M,g)$ is a harmonic from a Riemannian manifold $(M,g)$ onto itself. In this paper, we study the harmonicity of identity maps $(M,g)\longrightarrow(M,g-df\otimes df)$ and $(M,g-df\otimes df)\longrightarrow(M,g)$ where $f$ is a smooth function with gradient norm $<1$ on $(M,g)$. We construct new examples of identity harmonic maps. We define a symmetric tensor field on $M$ whose properties are related to the harmonicity of these identity maps.

References

  • Baird, P. and Wood,J. C. :Harmonic morphisms between Riemannain manifolds. Clarendon Press, Oxford (2003).
  • Benkartab, A. and Mohammed Cherif, A.: New methods of construction for biharmonic maps, Kyungpook Math. J. 59(2019), 135–147.
  • Benkartab, A. and Mohammed Cherif, A.: Deformations of Metrics and Biharmonic Maps, Commun. Math. 28 (2020), 263–275.
  • Eells, J.and Lemaire, L.:A report on harmonic maps. Bull. London Math. Soc. 16, 1–68(1978).
  • Eells, J.and Lemaire,L.: Another report on harmonic maps. Bull. London Math. Soc. 20 , 385–524(1988).
  • Eells, J. and Sampson,J. H.: Harmonic mappings of Riemannian manifolds. Amer. J. Math. 86, 109–160(1964).
  • Merdji, B. and Mohammed Cherif, A.: New types of metrics deformations and applications to p-biharmonic maps. J. Indian Math. Soc. 90 (3-4) , 387–400(2023).
  • Udrişte, C.: Convex Functions and Optimization Methods on Riemannian Manifolds. Mathematics and Its Applications, Kluwer Academic Publishers: Dordrecht, The Netherlands, 1994.
  • Sakai, T.: Riemannian Geometry. Shokabo, Tokyo (1992). (in Japanese).
  • Topping, P. : Lectures on the Ricci Flow. Number 325 in London Mathematical Society Lecture Note Series. Cambridge University Press, October, 2006.
There are 10 citations in total.

Details

Primary Language English
Subjects Algebraic and Differential Geometry
Journal Section Research Article
Authors

Aicha Benkartab This is me 0009-0003-4510-3847

Ahmed Mohammed Cherif 0000-0002-6155-0976

Early Pub Date October 13, 2025
Publication Date October 14, 2025
Submission Date January 24, 2025
Acceptance Date June 18, 2025
Published in Issue Year 2025 Volume: 18 Issue: 2

Cite

APA Benkartab, A., & Mohammed Cherif, A. (2025). Geometry of Harmonic Identity Maps. International Electronic Journal of Geometry, 18(2), 396-402. https://doi.org/10.36890/iejg.1626396
AMA Benkartab A, Mohammed Cherif A. Geometry of Harmonic Identity Maps. Int. Electron. J. Geom. October 2025;18(2):396-402. doi:10.36890/iejg.1626396
Chicago Benkartab, Aicha, and Ahmed Mohammed Cherif. “Geometry of Harmonic Identity Maps”. International Electronic Journal of Geometry 18, no. 2 (October 2025): 396-402. https://doi.org/10.36890/iejg.1626396.
EndNote Benkartab A, Mohammed Cherif A (October 1, 2025) Geometry of Harmonic Identity Maps. International Electronic Journal of Geometry 18 2 396–402.
IEEE A. Benkartab and A. Mohammed Cherif, “Geometry of Harmonic Identity Maps”, Int. Electron. J. Geom., vol. 18, no. 2, pp. 396–402, 2025, doi: 10.36890/iejg.1626396.
ISNAD Benkartab, Aicha - Mohammed Cherif, Ahmed. “Geometry of Harmonic Identity Maps”. International Electronic Journal of Geometry 18/2 (October2025), 396-402. https://doi.org/10.36890/iejg.1626396.
JAMA Benkartab A, Mohammed Cherif A. Geometry of Harmonic Identity Maps. Int. Electron. J. Geom. 2025;18:396–402.
MLA Benkartab, Aicha and Ahmed Mohammed Cherif. “Geometry of Harmonic Identity Maps”. International Electronic Journal of Geometry, vol. 18, no. 2, 2025, pp. 396-02, doi:10.36890/iejg.1626396.
Vancouver Benkartab A, Mohammed Cherif A. Geometry of Harmonic Identity Maps. Int. Electron. J. Geom. 2025;18(2):396-402.