Research Article
BibTex RIS Cite

Year 2025, Volume: 18 Issue: 2, 230 - 242
https://doi.org/10.36890/iejg.1660936

Abstract

References

  • Chen, B. Y., Ishikawa, S.: Biharmonic surfaces in pseudo-Euclidean spaces. Mem. Fac. Sci. Kyushu Univ. Ser. A 45(2) , 323–347 (1991).
  • Cho, J.T., Inoguchi, J., Lee, J.-E.: Biharmonic curves in 3-dimensional Sasakian space form. Ann. Math. Pura Appl. 186 , 685-701 (2007).
  • Hawking, S.W., Ellis, G. F. R. : The large scale structure of space-time. Cambridge Monographs on Mathematical Physics 1. London: Cambridge University Press, 1973.
  • Inoguchi, J.: Submanifolds with harmonic mean curvature vector field in contact 3-manifolds. Coll. Math. 100, 163-179 (2004).
  • Inoguchi, J.: Minimal surfaces in 3-dimensional solvable Lie groups. Chinese Ann. Math. B. 24, 73-84 (2003).
  • Inoguchi, J.: Minimal surfaces in 3-dimensional solvable Lie groups II. Bull. Austral. Math. Soc. 73, 365-374 (2006).
  • Inoguchi, J.: Biharmonic curves in Minkowki 3-space. Int. J. Math. Math. Sci. 2003(21), 1365-1368 (2003).
  • Inoguchi, J., Lee, S.: A Weierstrass representation for minimal surfaces in Sol. Proc. Amer. Math. Soc. 136, 2209-2216 (2008).
  • Inoguchi, J., Lee, J. E.: Slant curves in 3-dimensional almost contact metric geometry. Int. Electron. J. Geom. 8(2), 106–146 (2015).
  • Lee, J. E.: Biharmonic spacelike curves in Lorentzian Heigenberg space. Commun. Korean Math. Soc., 33(4) , 1309–1320 (2018).
  • Lee, J. E.: Biharmonic curves in 3-dimensional Lorentzian Sasakian space forms. Commun. Korean Math. Soc., 35(3) , 967–977 (2020).
  • Lee, J. E.: Pointwise slant curves in pseudo-Hermitian geometry,.Mediterr. J. math. 19, Article number 130 (2022).
  • Sasahara, T.: Biharmonic submanifolds in normalflat Lorentz 3-space forms. Bull. Aust. Math. Soc. 85, 422–432 (2012).
  • Tricerri, F., Vanhecke, L.: Homogeneous Structures on Riemannian Manifolds. Lecture Notes Series, London Math. Soc. 52, Cambridge Univ. Press (1983).
  • Wełyczko, J.: Slant curves in 3-dimensional normal almost paracontact metric manifolds. Mediterr. J. math. 11, 965–978 (2014).
  • Wełyczko, J.: On Legendre curves in 3-dimensional normal almost paracontact metric manifolds. Result. Math. 54, 377-387 (2009).

Biharmonic Curves in Solvable Lie Group

Year 2025, Volume: 18 Issue: 2, 230 - 242
https://doi.org/10.36890/iejg.1660936

Abstract

In this paper, we study biharmonic curves in the solvable Lie group $G(c_1,c_2)$ with Lorentzian metric. In particular, we find biharmonic almost Legendre curves in the solvable Lie group $G(c_1,c_2)$ with Lorentzian metric.

References

  • Chen, B. Y., Ishikawa, S.: Biharmonic surfaces in pseudo-Euclidean spaces. Mem. Fac. Sci. Kyushu Univ. Ser. A 45(2) , 323–347 (1991).
  • Cho, J.T., Inoguchi, J., Lee, J.-E.: Biharmonic curves in 3-dimensional Sasakian space form. Ann. Math. Pura Appl. 186 , 685-701 (2007).
  • Hawking, S.W., Ellis, G. F. R. : The large scale structure of space-time. Cambridge Monographs on Mathematical Physics 1. London: Cambridge University Press, 1973.
  • Inoguchi, J.: Submanifolds with harmonic mean curvature vector field in contact 3-manifolds. Coll. Math. 100, 163-179 (2004).
  • Inoguchi, J.: Minimal surfaces in 3-dimensional solvable Lie groups. Chinese Ann. Math. B. 24, 73-84 (2003).
  • Inoguchi, J.: Minimal surfaces in 3-dimensional solvable Lie groups II. Bull. Austral. Math. Soc. 73, 365-374 (2006).
  • Inoguchi, J.: Biharmonic curves in Minkowki 3-space. Int. J. Math. Math. Sci. 2003(21), 1365-1368 (2003).
  • Inoguchi, J., Lee, S.: A Weierstrass representation for minimal surfaces in Sol. Proc. Amer. Math. Soc. 136, 2209-2216 (2008).
  • Inoguchi, J., Lee, J. E.: Slant curves in 3-dimensional almost contact metric geometry. Int. Electron. J. Geom. 8(2), 106–146 (2015).
  • Lee, J. E.: Biharmonic spacelike curves in Lorentzian Heigenberg space. Commun. Korean Math. Soc., 33(4) , 1309–1320 (2018).
  • Lee, J. E.: Biharmonic curves in 3-dimensional Lorentzian Sasakian space forms. Commun. Korean Math. Soc., 35(3) , 967–977 (2020).
  • Lee, J. E.: Pointwise slant curves in pseudo-Hermitian geometry,.Mediterr. J. math. 19, Article number 130 (2022).
  • Sasahara, T.: Biharmonic submanifolds in normalflat Lorentz 3-space forms. Bull. Aust. Math. Soc. 85, 422–432 (2012).
  • Tricerri, F., Vanhecke, L.: Homogeneous Structures on Riemannian Manifolds. Lecture Notes Series, London Math. Soc. 52, Cambridge Univ. Press (1983).
  • Wełyczko, J.: Slant curves in 3-dimensional normal almost paracontact metric manifolds. Mediterr. J. math. 11, 965–978 (2014).
  • Wełyczko, J.: On Legendre curves in 3-dimensional normal almost paracontact metric manifolds. Result. Math. 54, 377-387 (2009).
There are 16 citations in total.

Details

Primary Language English
Subjects Algebraic and Differential Geometry
Journal Section Research Article
Authors

Ji-eun Lee 0000-0003-0698-9596

Early Pub Date October 13, 2025
Publication Date October 14, 2025
Submission Date March 19, 2025
Acceptance Date July 9, 2025
Published in Issue Year 2025 Volume: 18 Issue: 2

Cite

APA Lee, J.- eun. (2025). Biharmonic Curves in Solvable Lie Group. International Electronic Journal of Geometry, 18(2), 230-242. https://doi.org/10.36890/iejg.1660936
AMA Lee J eun. Biharmonic Curves in Solvable Lie Group. Int. Electron. J. Geom. October 2025;18(2):230-242. doi:10.36890/iejg.1660936
Chicago Lee, Ji-eun. “Biharmonic Curves in Solvable Lie Group”. International Electronic Journal of Geometry 18, no. 2 (October 2025): 230-42. https://doi.org/10.36890/iejg.1660936.
EndNote Lee J- eun (October 1, 2025) Biharmonic Curves in Solvable Lie Group. International Electronic Journal of Geometry 18 2 230–242.
IEEE J.- eun Lee, “Biharmonic Curves in Solvable Lie Group”, Int. Electron. J. Geom., vol. 18, no. 2, pp. 230–242, 2025, doi: 10.36890/iejg.1660936.
ISNAD Lee, Ji-eun. “Biharmonic Curves in Solvable Lie Group”. International Electronic Journal of Geometry 18/2 (October2025), 230-242. https://doi.org/10.36890/iejg.1660936.
JAMA Lee J- eun. Biharmonic Curves in Solvable Lie Group. Int. Electron. J. Geom. 2025;18:230–242.
MLA Lee, Ji-eun. “Biharmonic Curves in Solvable Lie Group”. International Electronic Journal of Geometry, vol. 18, no. 2, 2025, pp. 230-42, doi:10.36890/iejg.1660936.
Vancouver Lee J- eun. Biharmonic Curves in Solvable Lie Group. Int. Electron. J. Geom. 2025;18(2):230-42.