Research Article
BibTex RIS Cite

Year 2025, Volume: 18 Issue: 2, 243 - 258
https://doi.org/10.36890/iejg.1676428

Abstract

References

  • Abbassi, M.T.K.: Note on the classification Theorems of g-natural metrics on the tangent bundle of a Riemannian manifold (M, g). Comment. Math. Univ. Carolinae. 45 (4) (2004), 591–596.
  • Abbassi, M.T.K., Amri, N. and Calvaruso, G.: g-natural symmetries on tangent bundles. Mathematische Nachrichten., 293 (2020), 1873–1887.
  • Abbassi, M.T.K. and Calvaruso, G.: g-natural contact metrics on unit tangent sphere bundles. Monaths. Math., 151, (2006) 89–109.
  • Abbassi, M.T.K., Calvaruso, G. and Perrone, D.: Harmonic maps defined by the geodesic flow. Houston J. Math., 36 no.1 (2010), 69–90.
  • Abbassi, M.T.K. and Kowalski, O.: On g-natural metrics with constant scalar curvature on unit tangent sphere bundles. Topics in Almost Hermitian Geometry and related fields, Proc. of the Int. Conf. in Honor of K. Sekigawa’s 60th birthday, World Scientific, 2005, 1–29.
  • Abbassi, M.T.K. and Mekrami, A.: On natural symmetries on slit tangent bundles of Finsler manifolds. Ann. Univ. Ferrara, 71, 28 (2025).
  • Bao, D., Chern, S.S. and Shen, Z.: An Introduction to Riemannian-Finsler Geometry. Springer-Verlag, New York, 2000.
  • Bejancu, A.: Tangent Bundle and Indicatrix Bundle of a Finsler manifold. Kodai Math. J. 31, 272–306 (2008).
  • Besse, A.L.: Manifolds all of whose geodesics are closed. Ergeb. Math. 93, Springer-Verlag, Berlin, Heidelberg, New York 1978.
  • Blair, D.E. : Riemannian geometry of contact and sympletic manifolds. Progress in Math. 203, Birkäuser, 2002.
  • Calvaruso, G. and Perrone, D.: Homogeneous and H-contact unit tangent sphere bundles. Austral. J. Math., 88 (2010), 323–337.
  • Chavel, I.: Eigenvalues in Riemannian Geometry. Academic Press 1984.
  • Grifone J.: Transformations infinitésimales conformes d’une variété Finslérienne. C.R. Acad. Sc. Paris 280, Série A, 519–522 (1975).
  • Grifone J.: Sur les transformations infinitésimales conformes d’une variété Finslérienne. C.R. Acad. Sc. Paris 280, Série A, 583–585 (1975).
  • Hedayatian, S. and Bidabad, B.: Conformal vector fields on tangent bundle of a Riemannian manifold. Iranian J. Sc. Tech., Trans. A, 29 (2005) no. 3, 531–539.
  • Lovas, R.L.: Affine and projective vector fields on spray manifolds. Period. Math. Hungarica 48 (2004), 165–179.
  • Obata, M.: Conformal transformations of Riemannian manifolds, J. Diff. Geom. 4 (1970), 311–333.
  • Raei, Z. and Latifi, D.: Curvatures of tangent bundle of Finsler manifold with Cheeger-Gromoll metric. Matematicki Vesnik 70, no.2 (2018), 134–146.
  • Raei, Z.: On the geometry of tangent bundle of Finsler manifold with Cheeger-Gromoll metric. J. Finsler Geom. Appl. 2, no. 1 (2021), 1–30.
  • Sasaki, S.: On the differential geometry of tangent bundles of Riemannian manifolds. Tohoku Math. J., 10 (1958), 338–354.
  • Sasaki, S.: On the differential geometry of tangent bundles of Riemannian manifolds- II. Tohoku Math. J., 14 (1962) 146–155).
  • Szilasi, J. and Tóth, A.: Conformal vector fields on Finsler manifolds. Comm. Math., 19 (2011), No. 2, 149–168.
  • Tanno, S.: Infinitesimal isometries on the tangent bundles with complete lift metric. Tensor, N.S. 28 (1974), 139–144.
  • Tanno, S.: Killing vectors and geodesic flow vectors on tangent bundle, J. Reine Angew. Math. 238 (1976), 162–171.
  • Wu, B.Y.: Some results on the geometry of tangent bundle of Finsler manifolds. Publ. Math. Debrecen 71, no. 1-2 (2007), 185–193.

On the Geometry of the Indicatrix Bundle of a Finsler Manifold

Year 2025, Volume: 18 Issue: 2, 243 - 258
https://doi.org/10.36890/iejg.1676428

Abstract

In this paper, we investigate a class of metrics induced by $F$-natural metrics on the indicatrix bundle of a Finsler manifold. This class constitutes a four-parameter family that generalizes the well-known $g$-natural metrics on the unit tangent bundle of a Riemannian manifold. Within this framework, we construct a three-parameter family of contact metric structures whose associated metrics are $F$-natural, and we establish that, in contrast to the Riemannian case —where all such $K$-contact metrics on unit tangent bundles are necessarily Sasakian— the corresponding structures in the Finslerian setting can be $K$-contact without being Sasakian. Furthermore, we provide a characterization of Finsler manifolds with positive constant flag curvature via the existence of $K$-contact structures on their indicatrix bundles.

Ethical Statement

The authors declare that they have no competing interests.

References

  • Abbassi, M.T.K.: Note on the classification Theorems of g-natural metrics on the tangent bundle of a Riemannian manifold (M, g). Comment. Math. Univ. Carolinae. 45 (4) (2004), 591–596.
  • Abbassi, M.T.K., Amri, N. and Calvaruso, G.: g-natural symmetries on tangent bundles. Mathematische Nachrichten., 293 (2020), 1873–1887.
  • Abbassi, M.T.K. and Calvaruso, G.: g-natural contact metrics on unit tangent sphere bundles. Monaths. Math., 151, (2006) 89–109.
  • Abbassi, M.T.K., Calvaruso, G. and Perrone, D.: Harmonic maps defined by the geodesic flow. Houston J. Math., 36 no.1 (2010), 69–90.
  • Abbassi, M.T.K. and Kowalski, O.: On g-natural metrics with constant scalar curvature on unit tangent sphere bundles. Topics in Almost Hermitian Geometry and related fields, Proc. of the Int. Conf. in Honor of K. Sekigawa’s 60th birthday, World Scientific, 2005, 1–29.
  • Abbassi, M.T.K. and Mekrami, A.: On natural symmetries on slit tangent bundles of Finsler manifolds. Ann. Univ. Ferrara, 71, 28 (2025).
  • Bao, D., Chern, S.S. and Shen, Z.: An Introduction to Riemannian-Finsler Geometry. Springer-Verlag, New York, 2000.
  • Bejancu, A.: Tangent Bundle and Indicatrix Bundle of a Finsler manifold. Kodai Math. J. 31, 272–306 (2008).
  • Besse, A.L.: Manifolds all of whose geodesics are closed. Ergeb. Math. 93, Springer-Verlag, Berlin, Heidelberg, New York 1978.
  • Blair, D.E. : Riemannian geometry of contact and sympletic manifolds. Progress in Math. 203, Birkäuser, 2002.
  • Calvaruso, G. and Perrone, D.: Homogeneous and H-contact unit tangent sphere bundles. Austral. J. Math., 88 (2010), 323–337.
  • Chavel, I.: Eigenvalues in Riemannian Geometry. Academic Press 1984.
  • Grifone J.: Transformations infinitésimales conformes d’une variété Finslérienne. C.R. Acad. Sc. Paris 280, Série A, 519–522 (1975).
  • Grifone J.: Sur les transformations infinitésimales conformes d’une variété Finslérienne. C.R. Acad. Sc. Paris 280, Série A, 583–585 (1975).
  • Hedayatian, S. and Bidabad, B.: Conformal vector fields on tangent bundle of a Riemannian manifold. Iranian J. Sc. Tech., Trans. A, 29 (2005) no. 3, 531–539.
  • Lovas, R.L.: Affine and projective vector fields on spray manifolds. Period. Math. Hungarica 48 (2004), 165–179.
  • Obata, M.: Conformal transformations of Riemannian manifolds, J. Diff. Geom. 4 (1970), 311–333.
  • Raei, Z. and Latifi, D.: Curvatures of tangent bundle of Finsler manifold with Cheeger-Gromoll metric. Matematicki Vesnik 70, no.2 (2018), 134–146.
  • Raei, Z.: On the geometry of tangent bundle of Finsler manifold with Cheeger-Gromoll metric. J. Finsler Geom. Appl. 2, no. 1 (2021), 1–30.
  • Sasaki, S.: On the differential geometry of tangent bundles of Riemannian manifolds. Tohoku Math. J., 10 (1958), 338–354.
  • Sasaki, S.: On the differential geometry of tangent bundles of Riemannian manifolds- II. Tohoku Math. J., 14 (1962) 146–155).
  • Szilasi, J. and Tóth, A.: Conformal vector fields on Finsler manifolds. Comm. Math., 19 (2011), No. 2, 149–168.
  • Tanno, S.: Infinitesimal isometries on the tangent bundles with complete lift metric. Tensor, N.S. 28 (1974), 139–144.
  • Tanno, S.: Killing vectors and geodesic flow vectors on tangent bundle, J. Reine Angew. Math. 238 (1976), 162–171.
  • Wu, B.Y.: Some results on the geometry of tangent bundle of Finsler manifolds. Publ. Math. Debrecen 71, no. 1-2 (2007), 185–193.
There are 25 citations in total.

Details

Primary Language English
Subjects Algebraic and Differential Geometry
Journal Section Research Article
Authors

Mohamed Tahar Kadaoui Abbassi 0000-0001-7802-0624

Abderrahim Mekrami 0009-0002-5843-5026

Early Pub Date October 13, 2025
Publication Date October 14, 2025
Submission Date April 16, 2025
Acceptance Date April 22, 2025
Published in Issue Year 2025 Volume: 18 Issue: 2

Cite

APA Kadaoui Abbassi, M. T., & Mekrami, A. (2025). On the Geometry of the Indicatrix Bundle of a Finsler Manifold. International Electronic Journal of Geometry, 18(2), 243-258. https://doi.org/10.36890/iejg.1676428
AMA Kadaoui Abbassi MT, Mekrami A. On the Geometry of the Indicatrix Bundle of a Finsler Manifold. Int. Electron. J. Geom. October 2025;18(2):243-258. doi:10.36890/iejg.1676428
Chicago Kadaoui Abbassi, Mohamed Tahar, and Abderrahim Mekrami. “On the Geometry of the Indicatrix Bundle of a Finsler Manifold”. International Electronic Journal of Geometry 18, no. 2 (October 2025): 243-58. https://doi.org/10.36890/iejg.1676428.
EndNote Kadaoui Abbassi MT, Mekrami A (October 1, 2025) On the Geometry of the Indicatrix Bundle of a Finsler Manifold. International Electronic Journal of Geometry 18 2 243–258.
IEEE M. T. Kadaoui Abbassi and A. Mekrami, “On the Geometry of the Indicatrix Bundle of a Finsler Manifold”, Int. Electron. J. Geom., vol. 18, no. 2, pp. 243–258, 2025, doi: 10.36890/iejg.1676428.
ISNAD Kadaoui Abbassi, Mohamed Tahar - Mekrami, Abderrahim. “On the Geometry of the Indicatrix Bundle of a Finsler Manifold”. International Electronic Journal of Geometry 18/2 (October2025), 243-258. https://doi.org/10.36890/iejg.1676428.
JAMA Kadaoui Abbassi MT, Mekrami A. On the Geometry of the Indicatrix Bundle of a Finsler Manifold. Int. Electron. J. Geom. 2025;18:243–258.
MLA Kadaoui Abbassi, Mohamed Tahar and Abderrahim Mekrami. “On the Geometry of the Indicatrix Bundle of a Finsler Manifold”. International Electronic Journal of Geometry, vol. 18, no. 2, 2025, pp. 243-58, doi:10.36890/iejg.1676428.
Vancouver Kadaoui Abbassi MT, Mekrami A. On the Geometry of the Indicatrix Bundle of a Finsler Manifold. Int. Electron. J. Geom. 2025;18(2):243-58.