Year 2025,
Volume: 18 Issue: 2, 277 - 292
Esra Parlak
,
Zehra Ozdemir
References
-
Antonuccio, F.: Split-quaternions and the Dirac equation. Adv. Appl. Clifford Algebras. 25(1), 13-29 (2015).
-
Aslan, S., Yaylı, Y.: Canal surfaces with quaternions. Adv. Appl. Clifford Algebras. 26(1), 31-38 (2016).
-
Ata, E., Yayli, Y.: Split quaternions and semi-Euclidean projective spaces. Chaos, Solitons Fractals. 41(4), 1910-1915 (2009).
-
Babaarslan, M., Yayli, Y.: Split quaternions and spacelike constant slope surfaces in Minkowski 3-space. Int. J. Geom. 2(1), 23-33 (2013).
-
Barros, M., Romero, A., Cabrerizo, J. L., Fernández, M.: The gauss-landau-hall problem on riemannian surfaces. J. Math. Phys. 46(11), 112905
(2005).
-
Barros, M., Cabrerizo, J. L., Fernández, M., Romero, A.: Magnetic vortex filament flows. J. Math. Phys. 48(8) (2007).
-
Bayram, E., Güler, F., Kasap, E.: Magnetic flux ruled surfaces. Math. Methods Appl. Sci. 46(5), 5989-6001 (2023).
-
Berger, M. A., Field, G. B.: The topological properties of magnetic helicity, J. Fluid Mech. 147, 133-148 (1984).
-
Cayley, A.: On certain results relating to quaternions. Philosophical Mag. 26, 141–145 (1845).
-
Chanyal, B. C.: A relativistic quantum theory of dyons wave propagation. Can. J. Phys. 95(12), 1200-1207 (2017).
-
Chanyal, B. C., Pathak, M.: Quaternionic approach to dual magnetohydrodynamics of dyonic cold plasma. Adv. High Energy Phys. 2018(1),
7843730 (2018).
-
Chanyal, B. C.: A new development in quantum field equations of dyons. Can. J. Phys. 96(11), 1192-1200 (2018).
-
Chen, F. F.: Introduction to plasma physics and controlled fusion. Plenum Press, New York (1984).
-
Clifford, W. K.: Preliminary sketch of biquaternions. Proc. London Math. Soc. 4(64), 381-395 (1873).
-
Chui, A. Y. K., Moffatt, H. K.: Minimum energy magnetic fields with toroidal topology. In Topological aspects of the dynamics of fluids
and plasmas. Springer, Netherlands (1992).
-
Chui, A. Y., Moffatt, H. K.: The energy and helicity of knotted magnetic flux tubes. Proc. R. Soc. A. 451(1943), 609-629 (1995).
-
Demir, S., Tanışlı, M., Candemir, N. : Hyperbolic quaternion formulation of electromagnetism. Adv. Appl. Clifford Algebras. 20(3), 547-563
(2010).
-
Duggal, K. L., Jin, D. H.: Null curves and hypersurfaces of semi-Riemannian manifolds. World Scientific, Singapore (2007).
-
Duru, M., Çolakoğlu, H. B.: Generalized split quaternions and their applications on non-parabolic conical rotations. Symmetry. 15(9), 1805 (2023).
-
Eshraghi, H., Gibbon, J. D.: Quaternions and ideal flows. J. Phys. A: Math. Theor. 41(34), 344004 (2008).
-
Fernandez, A., Gimenez, A., Lucas, P.:Geometrical particle models on 3D null curves. 543(3-4), 311-317 (2002).
-
Fernandez, A., Gimenez, A., Lucas, P., J.:Relativistic particles and the geometry of 4-D null curves. 548(3-4), 284–290 (2007).
-
Fisher, G. H., Fan, Y., Longcope, D.W., Linton, M. G., Abbett,W. P.: Magnetic flux tubes inside the sun. Phys. Plasmas. 7(5), 2173-2179 (2000).
-
Galsgaard, K., Titov, V. S., Neukirch, T.: Magnetic pinching of hyperbolic flux tubes. II. Dynamic numerical model. Astrophys. J. 595(1),
506–519 (2003).
-
Gibbon, J. D.: A quaternionic structure in the three-dimensional Euler and ideal magneto-hydrodynamics equations. Physica D. 166(1-2), 17-28
(2002).
-
Gibbon, J. D., Holm, D. D.: Lagrangian analysis of alignment dynamics for isentropic compressible magnetohydrodynamics. New J. Phys. 9(8), 292
(2007).
-
Gibbon, J. D., Holm, D. D., Kerr, R. M., Roulstone, I. : Quaternions and particle dynamics in the Euler fluid equations, Nonlinearity. 19(8),
1969–1983 (2006).
-
Gibbon, J. D., Holm, D. D.:Lagrangian particle paths and ortho-normal quaternion frames, Nonlinearity. 20(7), 1745 (2007).
-
Giardino, S.: Differential geometry using quaternions, Int. Electron. J. Geom. 17(2), 700-711 (2024).
-
Giardino, S. Quaternionic electrodynamics. Mod. Phys. Lett. A. 35(39), 2050327 (2020).
-
Güler, F., Kasap, E., Altınışık, N.: A new approach to find the magnetic flux surfaces. Int. J. Geom. Methods Mod. Phys. 21(01), 2450026 (2024).
-
Güler, F., Bayram, E., Kasap, E.: Magnetic spherical indicatricies in Minkowski 3-space. Int. J. Geom. Methods Mod. Phys. 20(11), 2350179
(2023).
-
Gogberashvili, M.: Split quaternions and particles in (2+ 1)-space.. Eur. Phys. J. C. 74(12), 3200 (2014).
-
Gogberashvili, M.: (2+ 1)-Maxwell equations in split quaternions. Physics. 4(1), 329-363 (2022).
-
Gök, i.: Quaternionic approach of canal surfaces constructed by some new ideas. Adv. Appl. Clifford Algebras. 27(2), 1175-1190 (2017).
-
Grbovic, M., Nešovic, E.: On generalized Bishop frame of null Cartan curve in Minkowski 3-space, Kragujevac J. Math. 43(4), 559-573 (2019).
-
Hamilton, W.R.: On quaternions; or on a new system of imaginaries in algebra. Lond. Edinb. Dublin Philos. Mag. J. Sci. 25(3), 489-495 (1844).
-
Hardy, A. S.: Elements of quaternions. Boston: Ginn, Heath, and Company (1881).
-
Inoguchi, J. I, Lee, S.: Null curves in Minkowski 3-space. Int. Electron. J. Geom. 1(2), 40-83 (2008).
-
Jafari, M., Yayli, Y.: Matrix theory over the split quaternions. Int. J. Geom. 3(2), 57-69 (2014).
-
Kazan, A., Karadag, H. B.: Magnetic pseudo null and magnetic null curves in Minkowski 3-space. Int. Math. Forum 12(3), 119-132 (2017).
-
Kocakuşaklı, E., Tuncer, O. O., Gök, İ., Yaylı, Y.: A new representation of canal surfaces with split quaternions in Minkowski 3-space. Adv. Appl.
Clifford Algebras. 27(2), 1387-1409 (2017).
-
Körpinar, Z., Körpinar, T. :New optical recursional spherical ferromagnetic flux for optical sonic microscale. J. Nonlinear Opt. Phys. Mater. 33(05),
2350051 (2024).
-
Körpinar, T., Demirkol, R. C., Körpınar, Z. : Fermi–Walker conformable connection and the evolution of the conformable magnetically driven
particles. Indian J. Phys. 98(8), 2861-2872 (2024).
-
Körpinar, T., Körpinar, Z., Sazak, A. :Electric and magnetic fluxes for pseudo-hyperbolic magnetic particles. Opt. Quantum Electron. 56(2), 196
(2024).
-
Körpınar,T., Demirkol, R.C., Asil,V., Körpınar, Z.: Magnetic flux surfaces by the fractional Heisenberg antiferromagnetic flow of magnetic b-lines
in binormal direction in Minkowski space. J. Magn. Magn. Mater. 549, 168952 (2022).
-
Kuipers, J. B.: Quaternions and rotation sequences: a primer with applications to orbits, aerospace, and virtual reality. Princeton University
Press (1999).
-
Lau, Y. T., Finn, J. M.: Three-dimensional kinematic reconnection in the presence of field nulls and closed field lines. Astrophys. J.,350, 672-691
(1990).
-
Lhotka, C., Narita, Y.: Kinematic models of the interplanetary magnetic field. Ann. Geophys. 37(3), 299-314 (2019).
-
Libine, M.: An invitation to split quaternionic analysis. In: Hypercomplex analysis and applications (161-180), Basel: Springer Basel.
(2010).
-
McAulay, A.: Octonions: A Development of Clifford’s Biquaternions. Cambridge University Press (1988).
-
Nešovic, E.: On rotation about lightlike axis in three-dimensional Minkowski space. Adv. Appl. Clifford Algebr. 26, 237-251 (2016).
-
Northrop, T.G.: The adiabatic motion of charged particles. 21, Interscience Publishers (1963).
-
Ryutova, M., Evenson, M.: Physics of magnetic flux tubes. Springer, Heidelberg (2015).
-
Özdemir, M., Ergin, A. A.: Rotations with unit timelike quaternions in Minkowski 3-space. J. Geom. Phys. 56(2), 322-336 (2006).
-
Özdemir, Z.: Null Cartan Helical Trajectories in Lorentzian 3-Space. Turk. J. Math. Comput. Sci. 11, 21-30 (2019).
-
Rösch, N.: Time-reversal symmetry, Kramers’ degeneracy and the algebraic eigenvalue problem. Chemical physics. 80(1-2), 1-5 (1983).
-
Shoemake, K. :Animating rotation with quaternion curves. In Proceedings of the 12th annual conference on Computer graphics and
interactive techniques. 19, 245-254 (1985).
-
Simsek, H., Özdemir, M.: Generating hyperbolical rotation matrix for a given hyperboloid. Linear Algebra Appl. 496, 221-245 (2016).
-
Simsek, H., Özdemir, M.: Rotations on a lightcone in Minkowski 3-space. Adv. Appl. Clifford Algebra. 27, 2841-2853 (2017).
-
Study, E.: Geometrie der Dynamen, Leipzig, B. G. Teubner (1903).
-
Synge, J.: Quaternions, Lorentz transformations, and the Conway-Dirac-Eddington matrices. Commun. Dublin Inst. Ser. A. 21, 1-67 (1972).
-
Tait, P.G.: An Elementary Treatise on Quaternions. 3rd edn. Cambridge: Cambridge University Press (1890).
-
Titov, V. S., Galsgaard, K., Neukirch, T.: Magnetic pinching of hyperbolic flux tubes. I. Basic estimations. Astrophys. J. 582(2), 1172–1186 (2003).
-
Tsap, Y., Fedun, V., Cheremnykh, O., Stepanov, A., Kryshtal, A., Kopylova, Y. : On the stabilization of a twisted magnetic flux tube. Astrophys.
J. 901(2), 99 (2020).
-
Uçum, A., İlarslan, K.: New types of canal surfaces in Minkowski 3-space. Adv. Appl. Clifford Algebras. 26(1), 449-468 (2016).
-
Vicci, L.: Quaternions and Rotations in 3-Space. The Algebra and Geometric Interpretation. Microelectric Systems Laboratory, Department
of Computer Sciences, UNCChapel Hill, Department of Computer Sciences, TR01–014. 1–11 (2001).
-
Warnick, K., Russer, P. H.: Differential forms and electromagnetic field theory, Prog. Electromagn. Res. 148, 83-112 (2014).
-
Wiedemann, H.: Single particle dynamics. Particle accelerator physics, Springer, Berlin (2007).
-
Xu, Z., Feng, R., Sun, J. G.: Analytic and algebraic properties of canal surfaces. J. Comput. Appl. Math. 195(1-2), 220-228 (2006).
-
Yang, L., Wang, Q. W., Kou, Z.: A system of tensor equations over the dual split quaternion algebra with an application. Mathematics. 12(22),
3571 (2024).
-
Zaqarashvili, T. V., Vörös, Z., Narita, Y., Bruno, R.: Twisted magnetic flux tubes in the solar wind. Astrophys. J. Lett. 783(1), L19 (2014).
The Evolution and Deformation of Magnetic Flux Tube Along Neutral Points
Year 2025,
Volume: 18 Issue: 2, 277 - 292
Esra Parlak
,
Zehra Ozdemir
Abstract
With advancements in animation and computer technologies throughout the last few years, quaternions are widely utilized to define three-dimensional rotating transformations. We demonstrate that an MFT (Magnetic Flux Tube) can be completely described via a quaternionic approach to support this. The flux tube equation constructed along the neutral point was derived and its components were looked at in this study. Then, we looked at the flux tube motion along this neutral point using the quaternion technique. We also studied the magnetohydrodynamics equations and Maxwell's equations from a quaternionic viewpoint. Moreover, we examined the deformations and variation of these flux tubes near the neutral points and found some extremely fascinating geometrical findings.
Also provided are explanations of the MFTs that employ the stretch factor. Following that, the kinematic equations' analytical solutions are found, and some examples illustrating the theory are displayed. Furthermore, the flux tube is expressed with split quaternions, and that makes it simpler to explain and visualize different physical principles.
References
-
Antonuccio, F.: Split-quaternions and the Dirac equation. Adv. Appl. Clifford Algebras. 25(1), 13-29 (2015).
-
Aslan, S., Yaylı, Y.: Canal surfaces with quaternions. Adv. Appl. Clifford Algebras. 26(1), 31-38 (2016).
-
Ata, E., Yayli, Y.: Split quaternions and semi-Euclidean projective spaces. Chaos, Solitons Fractals. 41(4), 1910-1915 (2009).
-
Babaarslan, M., Yayli, Y.: Split quaternions and spacelike constant slope surfaces in Minkowski 3-space. Int. J. Geom. 2(1), 23-33 (2013).
-
Barros, M., Romero, A., Cabrerizo, J. L., Fernández, M.: The gauss-landau-hall problem on riemannian surfaces. J. Math. Phys. 46(11), 112905
(2005).
-
Barros, M., Cabrerizo, J. L., Fernández, M., Romero, A.: Magnetic vortex filament flows. J. Math. Phys. 48(8) (2007).
-
Bayram, E., Güler, F., Kasap, E.: Magnetic flux ruled surfaces. Math. Methods Appl. Sci. 46(5), 5989-6001 (2023).
-
Berger, M. A., Field, G. B.: The topological properties of magnetic helicity, J. Fluid Mech. 147, 133-148 (1984).
-
Cayley, A.: On certain results relating to quaternions. Philosophical Mag. 26, 141–145 (1845).
-
Chanyal, B. C.: A relativistic quantum theory of dyons wave propagation. Can. J. Phys. 95(12), 1200-1207 (2017).
-
Chanyal, B. C., Pathak, M.: Quaternionic approach to dual magnetohydrodynamics of dyonic cold plasma. Adv. High Energy Phys. 2018(1),
7843730 (2018).
-
Chanyal, B. C.: A new development in quantum field equations of dyons. Can. J. Phys. 96(11), 1192-1200 (2018).
-
Chen, F. F.: Introduction to plasma physics and controlled fusion. Plenum Press, New York (1984).
-
Clifford, W. K.: Preliminary sketch of biquaternions. Proc. London Math. Soc. 4(64), 381-395 (1873).
-
Chui, A. Y. K., Moffatt, H. K.: Minimum energy magnetic fields with toroidal topology. In Topological aspects of the dynamics of fluids
and plasmas. Springer, Netherlands (1992).
-
Chui, A. Y., Moffatt, H. K.: The energy and helicity of knotted magnetic flux tubes. Proc. R. Soc. A. 451(1943), 609-629 (1995).
-
Demir, S., Tanışlı, M., Candemir, N. : Hyperbolic quaternion formulation of electromagnetism. Adv. Appl. Clifford Algebras. 20(3), 547-563
(2010).
-
Duggal, K. L., Jin, D. H.: Null curves and hypersurfaces of semi-Riemannian manifolds. World Scientific, Singapore (2007).
-
Duru, M., Çolakoğlu, H. B.: Generalized split quaternions and their applications on non-parabolic conical rotations. Symmetry. 15(9), 1805 (2023).
-
Eshraghi, H., Gibbon, J. D.: Quaternions and ideal flows. J. Phys. A: Math. Theor. 41(34), 344004 (2008).
-
Fernandez, A., Gimenez, A., Lucas, P.:Geometrical particle models on 3D null curves. 543(3-4), 311-317 (2002).
-
Fernandez, A., Gimenez, A., Lucas, P., J.:Relativistic particles and the geometry of 4-D null curves. 548(3-4), 284–290 (2007).
-
Fisher, G. H., Fan, Y., Longcope, D.W., Linton, M. G., Abbett,W. P.: Magnetic flux tubes inside the sun. Phys. Plasmas. 7(5), 2173-2179 (2000).
-
Galsgaard, K., Titov, V. S., Neukirch, T.: Magnetic pinching of hyperbolic flux tubes. II. Dynamic numerical model. Astrophys. J. 595(1),
506–519 (2003).
-
Gibbon, J. D.: A quaternionic structure in the three-dimensional Euler and ideal magneto-hydrodynamics equations. Physica D. 166(1-2), 17-28
(2002).
-
Gibbon, J. D., Holm, D. D.: Lagrangian analysis of alignment dynamics for isentropic compressible magnetohydrodynamics. New J. Phys. 9(8), 292
(2007).
-
Gibbon, J. D., Holm, D. D., Kerr, R. M., Roulstone, I. : Quaternions and particle dynamics in the Euler fluid equations, Nonlinearity. 19(8),
1969–1983 (2006).
-
Gibbon, J. D., Holm, D. D.:Lagrangian particle paths and ortho-normal quaternion frames, Nonlinearity. 20(7), 1745 (2007).
-
Giardino, S.: Differential geometry using quaternions, Int. Electron. J. Geom. 17(2), 700-711 (2024).
-
Giardino, S. Quaternionic electrodynamics. Mod. Phys. Lett. A. 35(39), 2050327 (2020).
-
Güler, F., Kasap, E., Altınışık, N.: A new approach to find the magnetic flux surfaces. Int. J. Geom. Methods Mod. Phys. 21(01), 2450026 (2024).
-
Güler, F., Bayram, E., Kasap, E.: Magnetic spherical indicatricies in Minkowski 3-space. Int. J. Geom. Methods Mod. Phys. 20(11), 2350179
(2023).
-
Gogberashvili, M.: Split quaternions and particles in (2+ 1)-space.. Eur. Phys. J. C. 74(12), 3200 (2014).
-
Gogberashvili, M.: (2+ 1)-Maxwell equations in split quaternions. Physics. 4(1), 329-363 (2022).
-
Gök, i.: Quaternionic approach of canal surfaces constructed by some new ideas. Adv. Appl. Clifford Algebras. 27(2), 1175-1190 (2017).
-
Grbovic, M., Nešovic, E.: On generalized Bishop frame of null Cartan curve in Minkowski 3-space, Kragujevac J. Math. 43(4), 559-573 (2019).
-
Hamilton, W.R.: On quaternions; or on a new system of imaginaries in algebra. Lond. Edinb. Dublin Philos. Mag. J. Sci. 25(3), 489-495 (1844).
-
Hardy, A. S.: Elements of quaternions. Boston: Ginn, Heath, and Company (1881).
-
Inoguchi, J. I, Lee, S.: Null curves in Minkowski 3-space. Int. Electron. J. Geom. 1(2), 40-83 (2008).
-
Jafari, M., Yayli, Y.: Matrix theory over the split quaternions. Int. J. Geom. 3(2), 57-69 (2014).
-
Kazan, A., Karadag, H. B.: Magnetic pseudo null and magnetic null curves in Minkowski 3-space. Int. Math. Forum 12(3), 119-132 (2017).
-
Kocakuşaklı, E., Tuncer, O. O., Gök, İ., Yaylı, Y.: A new representation of canal surfaces with split quaternions in Minkowski 3-space. Adv. Appl.
Clifford Algebras. 27(2), 1387-1409 (2017).
-
Körpinar, Z., Körpinar, T. :New optical recursional spherical ferromagnetic flux for optical sonic microscale. J. Nonlinear Opt. Phys. Mater. 33(05),
2350051 (2024).
-
Körpinar, T., Demirkol, R. C., Körpınar, Z. : Fermi–Walker conformable connection and the evolution of the conformable magnetically driven
particles. Indian J. Phys. 98(8), 2861-2872 (2024).
-
Körpinar, T., Körpinar, Z., Sazak, A. :Electric and magnetic fluxes for pseudo-hyperbolic magnetic particles. Opt. Quantum Electron. 56(2), 196
(2024).
-
Körpınar,T., Demirkol, R.C., Asil,V., Körpınar, Z.: Magnetic flux surfaces by the fractional Heisenberg antiferromagnetic flow of magnetic b-lines
in binormal direction in Minkowski space. J. Magn. Magn. Mater. 549, 168952 (2022).
-
Kuipers, J. B.: Quaternions and rotation sequences: a primer with applications to orbits, aerospace, and virtual reality. Princeton University
Press (1999).
-
Lau, Y. T., Finn, J. M.: Three-dimensional kinematic reconnection in the presence of field nulls and closed field lines. Astrophys. J.,350, 672-691
(1990).
-
Lhotka, C., Narita, Y.: Kinematic models of the interplanetary magnetic field. Ann. Geophys. 37(3), 299-314 (2019).
-
Libine, M.: An invitation to split quaternionic analysis. In: Hypercomplex analysis and applications (161-180), Basel: Springer Basel.
(2010).
-
McAulay, A.: Octonions: A Development of Clifford’s Biquaternions. Cambridge University Press (1988).
-
Nešovic, E.: On rotation about lightlike axis in three-dimensional Minkowski space. Adv. Appl. Clifford Algebr. 26, 237-251 (2016).
-
Northrop, T.G.: The adiabatic motion of charged particles. 21, Interscience Publishers (1963).
-
Ryutova, M., Evenson, M.: Physics of magnetic flux tubes. Springer, Heidelberg (2015).
-
Özdemir, M., Ergin, A. A.: Rotations with unit timelike quaternions in Minkowski 3-space. J. Geom. Phys. 56(2), 322-336 (2006).
-
Özdemir, Z.: Null Cartan Helical Trajectories in Lorentzian 3-Space. Turk. J. Math. Comput. Sci. 11, 21-30 (2019).
-
Rösch, N.: Time-reversal symmetry, Kramers’ degeneracy and the algebraic eigenvalue problem. Chemical physics. 80(1-2), 1-5 (1983).
-
Shoemake, K. :Animating rotation with quaternion curves. In Proceedings of the 12th annual conference on Computer graphics and
interactive techniques. 19, 245-254 (1985).
-
Simsek, H., Özdemir, M.: Generating hyperbolical rotation matrix for a given hyperboloid. Linear Algebra Appl. 496, 221-245 (2016).
-
Simsek, H., Özdemir, M.: Rotations on a lightcone in Minkowski 3-space. Adv. Appl. Clifford Algebra. 27, 2841-2853 (2017).
-
Study, E.: Geometrie der Dynamen, Leipzig, B. G. Teubner (1903).
-
Synge, J.: Quaternions, Lorentz transformations, and the Conway-Dirac-Eddington matrices. Commun. Dublin Inst. Ser. A. 21, 1-67 (1972).
-
Tait, P.G.: An Elementary Treatise on Quaternions. 3rd edn. Cambridge: Cambridge University Press (1890).
-
Titov, V. S., Galsgaard, K., Neukirch, T.: Magnetic pinching of hyperbolic flux tubes. I. Basic estimations. Astrophys. J. 582(2), 1172–1186 (2003).
-
Tsap, Y., Fedun, V., Cheremnykh, O., Stepanov, A., Kryshtal, A., Kopylova, Y. : On the stabilization of a twisted magnetic flux tube. Astrophys.
J. 901(2), 99 (2020).
-
Uçum, A., İlarslan, K.: New types of canal surfaces in Minkowski 3-space. Adv. Appl. Clifford Algebras. 26(1), 449-468 (2016).
-
Vicci, L.: Quaternions and Rotations in 3-Space. The Algebra and Geometric Interpretation. Microelectric Systems Laboratory, Department
of Computer Sciences, UNCChapel Hill, Department of Computer Sciences, TR01–014. 1–11 (2001).
-
Warnick, K., Russer, P. H.: Differential forms and electromagnetic field theory, Prog. Electromagn. Res. 148, 83-112 (2014).
-
Wiedemann, H.: Single particle dynamics. Particle accelerator physics, Springer, Berlin (2007).
-
Xu, Z., Feng, R., Sun, J. G.: Analytic and algebraic properties of canal surfaces. J. Comput. Appl. Math. 195(1-2), 220-228 (2006).
-
Yang, L., Wang, Q. W., Kou, Z.: A system of tensor equations over the dual split quaternion algebra with an application. Mathematics. 12(22),
3571 (2024).
-
Zaqarashvili, T. V., Vörös, Z., Narita, Y., Bruno, R.: Twisted magnetic flux tubes in the solar wind. Astrophys. J. Lett. 783(1), L19 (2014).