Research Article
BibTex RIS Cite

Year 2025, Volume: 18 Issue: 2, 384 - 395
https://doi.org/10.36890/iejg.1706246

Abstract

References

  • Azami, S.: Generalized Ricci solitons of three-dimensional Lorentzian Lie groups associated canonical connections and Kobayashi-Nomizu connections. Journal of Nonlinear Mathematical Physics. 30 (2), 1–33 (2023). https://doi.org/10.1007/s44198-023-00134-4
  • Borges, V.: On complete gradient Schouten solitons. Nonlinear Analysis. 221, 112883 (2022). https://doi.org/10.1016/j.na.2022. 112883
  • Buttsworth, T.: The prescribed Ricci curvature problem on three-dimensional unimodular Lie groups. Mathematische Nachrichten. 292 (4), 747–759 (2019). https://doi.org/10.1002/mana.201800052
  • Buttsworth, T., Pulemotov, A.: The prescribed Ricci curvature problem for homogeneous metrics. In: Dearricott, O., Tuschmann, W., Nikolayevsky, Y., Leistner, T., Crowley, D. (eds.), Differential Geometry in the Large. London Mathematical Society Lecture Note Series. Cambridge University Press. 169–192 (2020). https://doi.org/10.1017/9781108884136.010
  • Calvino-Louzao, E., Hervella, L. M., Seoane-Bascoy, J., Vázquez-Lorenzo, R.: Homogeneous Cotton solitons. Journal of Physics A: Mathematical and Theoretical. 46, 285204 (2013). https://doi.org/10.1088/1751-8113/46/28/285204
  • Djiadeu Ngaha, M. B., Boucetta, M., Wouafo Kamga, J.: The signature of the Ricci curvature of left-invariant Riemannian metrics on nilpotent Lie groups. Differential Geometry and its Applications. 47, 26–42 (2016). https://doi.org/10.1016/j.difgeo.2016.03.004
  • Foka, M. L., Mbatakou, S. J., Pefoukeu, R. N., Djiadeu Ngaha, M. B., Bouetou, T. B.: The prescribed Ricci curvature problem on fivedimensional nilpotent Lie groups. International Journal of Geometric Methods in Modern Physics. 22 (9), 2550055-15 (2025). https: //doi.org/10.1142/S0219887825500550
  • Friedan, D. H.: Nonlinear models in 2 + ε dimensions. Annals of Physics. 163 (2), 318–419 (1985).
  • Hamilton, R.: Three-manifolds with positive Ricci curvature. Journal of Differential Geometry. 17, 255–306 (1982).
  • Hamilton, R.: The Ricci curvature equation. In: Chern, S.-S. (ed.), Seminar on Nonlinear Partial Differential Equations. 47–72 (1985).
  • Hashinaga, T., Tamaru, H.: Three-dimensional solvsolitons and the minimality of the corresponding submanifolds. International Journal of Mathematics. 28 (6), 1750048 (2017).
  • Hashinaga, T., Tamaru, H., Terada, K.: Milnor-type theorems for left-invariant Riemannian metrics on Lie groups. Journal of the Mathematical Society of Japan. 68 (2), 669–684 (2016).
  • Kodama, H., Takahara, A., Tamaru, H.: The space of left-invariant metrics on a Lie group up to isometry and scaling. Manuscripta Mathematica. 135 (1), 229–243 (2011).
  • Lauret, J.: Ricci soliton homogeneous nilmanifolds. Mathematische Annalen. 319, 715–733 (2001).
  • Liu, S.: Algebraic Schouten solitons of three-dimensional Lorentzian Lie groups. Symmetry. 15 (4), 866 (2023). https://doi.org/10.3390/ sym15040866
  • Milnor, J.: Curvatures of left invariant metrics on Lie groups. Advances in Mathematics. 21 (3), 293–329 (1976).
  • Salimi Moghaddam, H. R.: An algebraic proof of the classification of five-dimensional nilsolitons. Journal of the Iranian Mathematical Society. 5 (2), 243–252 (2024). https://doi.org/10.30504/jims.2024.463565.1189
  • Pulemotov, A.: Metrics with prescribed Ricci curvature near the boundary of a manifold. Mathematische Annalen. 357 (3), 969–986 (2013). https://doi.org/10.1007/s00208-013-0929-y
  • Pulemotov, A.: Metrics with prescribed Ricci curvature on homogeneous spaces. Journal of Geometry and Physics. 106, 275–283 (2016). https://doi.org/10.1016/j.geomphys.2016.04.003
  • Wears, T. H.: On algebraic solitons for geometric evolution equations on three-dimensional Lie groups. Tbilisi Mathematical Journal. 9 (2), 33–58 (2016). https://doi.org/10.1515/tmj-2016-0018

Schouten-like Metrics on Five-Dimensional Nilpotent Lie Groups

Year 2025, Volume: 18 Issue: 2, 384 - 395
https://doi.org/10.36890/iejg.1706246

Abstract

The prescribed Ricci curvature problem consists of finding a Riemannian metric $g$ to satisfy the equation $Ric(g) = T$, for some fixed symmetric $(0,2)$-tensor field $T$ on a differential manifold $M$. In this paper, we define Schouten-like metric as a particular solution of a prescribed Ricci curvature problem, and we classify them on five-dimensional nilpotent Lie groups by establishing a link with algebraic Schouten solitons.

References

  • Azami, S.: Generalized Ricci solitons of three-dimensional Lorentzian Lie groups associated canonical connections and Kobayashi-Nomizu connections. Journal of Nonlinear Mathematical Physics. 30 (2), 1–33 (2023). https://doi.org/10.1007/s44198-023-00134-4
  • Borges, V.: On complete gradient Schouten solitons. Nonlinear Analysis. 221, 112883 (2022). https://doi.org/10.1016/j.na.2022. 112883
  • Buttsworth, T.: The prescribed Ricci curvature problem on three-dimensional unimodular Lie groups. Mathematische Nachrichten. 292 (4), 747–759 (2019). https://doi.org/10.1002/mana.201800052
  • Buttsworth, T., Pulemotov, A.: The prescribed Ricci curvature problem for homogeneous metrics. In: Dearricott, O., Tuschmann, W., Nikolayevsky, Y., Leistner, T., Crowley, D. (eds.), Differential Geometry in the Large. London Mathematical Society Lecture Note Series. Cambridge University Press. 169–192 (2020). https://doi.org/10.1017/9781108884136.010
  • Calvino-Louzao, E., Hervella, L. M., Seoane-Bascoy, J., Vázquez-Lorenzo, R.: Homogeneous Cotton solitons. Journal of Physics A: Mathematical and Theoretical. 46, 285204 (2013). https://doi.org/10.1088/1751-8113/46/28/285204
  • Djiadeu Ngaha, M. B., Boucetta, M., Wouafo Kamga, J.: The signature of the Ricci curvature of left-invariant Riemannian metrics on nilpotent Lie groups. Differential Geometry and its Applications. 47, 26–42 (2016). https://doi.org/10.1016/j.difgeo.2016.03.004
  • Foka, M. L., Mbatakou, S. J., Pefoukeu, R. N., Djiadeu Ngaha, M. B., Bouetou, T. B.: The prescribed Ricci curvature problem on fivedimensional nilpotent Lie groups. International Journal of Geometric Methods in Modern Physics. 22 (9), 2550055-15 (2025). https: //doi.org/10.1142/S0219887825500550
  • Friedan, D. H.: Nonlinear models in 2 + ε dimensions. Annals of Physics. 163 (2), 318–419 (1985).
  • Hamilton, R.: Three-manifolds with positive Ricci curvature. Journal of Differential Geometry. 17, 255–306 (1982).
  • Hamilton, R.: The Ricci curvature equation. In: Chern, S.-S. (ed.), Seminar on Nonlinear Partial Differential Equations. 47–72 (1985).
  • Hashinaga, T., Tamaru, H.: Three-dimensional solvsolitons and the minimality of the corresponding submanifolds. International Journal of Mathematics. 28 (6), 1750048 (2017).
  • Hashinaga, T., Tamaru, H., Terada, K.: Milnor-type theorems for left-invariant Riemannian metrics on Lie groups. Journal of the Mathematical Society of Japan. 68 (2), 669–684 (2016).
  • Kodama, H., Takahara, A., Tamaru, H.: The space of left-invariant metrics on a Lie group up to isometry and scaling. Manuscripta Mathematica. 135 (1), 229–243 (2011).
  • Lauret, J.: Ricci soliton homogeneous nilmanifolds. Mathematische Annalen. 319, 715–733 (2001).
  • Liu, S.: Algebraic Schouten solitons of three-dimensional Lorentzian Lie groups. Symmetry. 15 (4), 866 (2023). https://doi.org/10.3390/ sym15040866
  • Milnor, J.: Curvatures of left invariant metrics on Lie groups. Advances in Mathematics. 21 (3), 293–329 (1976).
  • Salimi Moghaddam, H. R.: An algebraic proof of the classification of five-dimensional nilsolitons. Journal of the Iranian Mathematical Society. 5 (2), 243–252 (2024). https://doi.org/10.30504/jims.2024.463565.1189
  • Pulemotov, A.: Metrics with prescribed Ricci curvature near the boundary of a manifold. Mathematische Annalen. 357 (3), 969–986 (2013). https://doi.org/10.1007/s00208-013-0929-y
  • Pulemotov, A.: Metrics with prescribed Ricci curvature on homogeneous spaces. Journal of Geometry and Physics. 106, 275–283 (2016). https://doi.org/10.1016/j.geomphys.2016.04.003
  • Wears, T. H.: On algebraic solitons for geometric evolution equations on three-dimensional Lie groups. Tbilisi Mathematical Journal. 9 (2), 33–58 (2016). https://doi.org/10.1515/tmj-2016-0018
There are 20 citations in total.

Details

Primary Language English
Subjects Algebraic and Differential Geometry
Journal Section Research Article
Authors

Marius Landry Foka 0009-0005-1414-1642

Michel Bertrand Ngaha Djiadeu 0000-0002-1585-5656

Thomas Bouetou Bouetou 0000-0002-2453-0378

Early Pub Date October 13, 2025
Publication Date October 15, 2025
Submission Date May 27, 2025
Acceptance Date August 25, 2025
Published in Issue Year 2025 Volume: 18 Issue: 2

Cite

APA Foka, M. L., Djiadeu, M. B. N., & Bouetou, T. B. (2025). Schouten-like Metrics on Five-Dimensional Nilpotent Lie Groups. International Electronic Journal of Geometry, 18(2), 384-395. https://doi.org/10.36890/iejg.1706246
AMA Foka ML, Djiadeu MBN, Bouetou TB. Schouten-like Metrics on Five-Dimensional Nilpotent Lie Groups. Int. Electron. J. Geom. October 2025;18(2):384-395. doi:10.36890/iejg.1706246
Chicago Foka, Marius Landry, Michel Bertrand Ngaha Djiadeu, and Thomas Bouetou Bouetou. “Schouten-Like Metrics on Five-Dimensional Nilpotent Lie Groups”. International Electronic Journal of Geometry 18, no. 2 (October 2025): 384-95. https://doi.org/10.36890/iejg.1706246.
EndNote Foka ML, Djiadeu MBN, Bouetou TB (October 1, 2025) Schouten-like Metrics on Five-Dimensional Nilpotent Lie Groups. International Electronic Journal of Geometry 18 2 384–395.
IEEE M. L. Foka, M. B. N. Djiadeu, and T. B. Bouetou, “Schouten-like Metrics on Five-Dimensional Nilpotent Lie Groups”, Int. Electron. J. Geom., vol. 18, no. 2, pp. 384–395, 2025, doi: 10.36890/iejg.1706246.
ISNAD Foka, Marius Landry et al. “Schouten-Like Metrics on Five-Dimensional Nilpotent Lie Groups”. International Electronic Journal of Geometry 18/2 (October2025), 384-395. https://doi.org/10.36890/iejg.1706246.
JAMA Foka ML, Djiadeu MBN, Bouetou TB. Schouten-like Metrics on Five-Dimensional Nilpotent Lie Groups. Int. Electron. J. Geom. 2025;18:384–395.
MLA Foka, Marius Landry et al. “Schouten-Like Metrics on Five-Dimensional Nilpotent Lie Groups”. International Electronic Journal of Geometry, vol. 18, no. 2, 2025, pp. 384-95, doi:10.36890/iejg.1706246.
Vancouver Foka ML, Djiadeu MBN, Bouetou TB. Schouten-like Metrics on Five-Dimensional Nilpotent Lie Groups. Int. Electron. J. Geom. 2025;18(2):384-95.