Spinor Representations of Special Curve Couples of Framed Curves in 3D Lie Groups
Year 2025,
Volume: 18 Issue: 2, 349 - 363
Zehra İşbilir
,
Bahar Doğan Yazıcı
,
Murat Tosun
Abstract
In this study, we aim to bring together the spinors, a useful concept from mathematics to physics, and Bertrand and Mannheim curves of framed curves in 3D Lie groups, that are a special singular curve in 3D Lie groups. For this purpose, we investigate the spinor representations of Bertrand and Mannheim curves of framed curves in 3D Lie groups with a bi-invariant metric. Based on the natural structures of Bertrand and Mannheim curves of framed curves and Lie groups, this study is a comprehensive study that includes spinor representations of both regular and singular Bertrand and Mannheim curves in 3D Lie groups. It is a comprehensive generalization of all the studies done in the spinor representation of relevant concepts, as it includes studies on spinor representations of both regular and singular Bertrand and Mannheim curves in the literature. Then, we determine the special cases of spinor equations of these special curve couples of framed curves. Additionally, we construct some geometric interpretations and results with respect to them.
References
-
Aminov, Y.: Differential geometry and topology of curves. Amsterdam, Netherlands: Gordon and Breach Science Publishers (2000).
-
Arnold, V. I.: Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits. Ann.
Inst. Fourier (Grenoble). 16(1), 319–361 (1966).
-
Balcı, Y., Eri¸sir, T., Güngör, M. A.: Hyperbolic spinor Darboux equations of spacelike curves in Minkowski 3-space. J. Chungcheong Math. Soc.
28, 525–535 (2015).
-
Bertrand, J.: Mémoire sur la théorie des courbes à double courbure. J. Math. Pures Appl. 15, 332–350 (1850) (in French).
-
Brauer, R., Weyl, H.: Spinors in n dimensions. Am. J. Math. 57, 425–449 (1935).
-
Cartan, E.: The theory of spinors. Herman, Paris (1966) [Dover, New York, 1981].
-
Crouch, P., Silva, L. F.: The dynamic interpolation problem: on Riemannian manifolds, Lie groups, and symmetric spaces. J. Dyn. Control Syst. 1(2),
177–202 (1995).
-
Çiftçi, Ü.: A generalization of Lancert’s theorem. J. Geom. Phys. 59, 1597–1603 (2009).
-
Çöken, A. C., Çiftçi, Ü.: A note on the geometry of Lie groups. Nonlinear Anal. 68(7), 2013–2016 (2008).
-
do Espirito-Santo, N., Fornari, S., Frensel, K., Ripoll, J.: Constant mean curvature hypersurfaces in a Lie group with a bi-invariant metric.
Manuscr. Math. 111, 459–470 (2003).
-
Doğan Yazıcı, B., Özkaldı Karakuş, S., Tosun, M.: Framed normal curves in Euclidean space. Tbil. Math. J. 27–37 (2020).
-
Doğan Yazıcı, B., Okuyucu, O. Z., Tosun, M.: Framed curves in three-dimensional Lie groups and a Berry phase model. J. Geom. Phys. 182,
104682 (2022).
-
Doğan Yazıcı, B., Özkaldı Karaku¸s, S., Tosun, M.: On the classification of framed rectifying curves in Euclidean space. Math. Methods Appl. Sci.
45(18) 12089–12098 (2022).
-
Doğan Yazıcı, B.,İşbilir, Z., Tosun, M.: Spinor representation of framed Mannheim curves. Turk. J. Math. 46, 2690–2700 (2022).
-
Dogan Yazıcı, B., Okuyucu, O. Z., Tosun, M.: On special singular curve couples of framed curves in 3D Lie groups. Commun. Fac. Sci. Univ.
Ank. Ser. A1 Math. Stat. 72(3), 710–720 (2023).
-
Eren, K.: Forming coupled dispersionless equations of families of Bertrand curves. Turk. J. Math. 47(1), 87–97 (2023).
-
Eren K.: Geometry of coupled dispersionless equations with Mannheim curves. An. ¸St. Univ. Ovidius Constan¸ta. 31(3), 111–123 (2023).
-
Erişir, T.: On spinor construction of Bertrand curves. AIMS Mathematics 6, 3583–3591 (2021).
-
Erişir, T., ˙Isabeyo˘ glu, Z.: The spinor expressions of Mannheim curves in Euclidean 3-space. Int. Electron. J. Geom. 16(1), 111–121 (2023).
-
Erişir, T., Eren, K.: Spinor representation of directional q-frame. Sigma J. Eng. Nat. Sci. 41(5), 1013–1018 (2023).
-
Erişir, T., Güngör, M. A., Tosun, M.: Geometry of the hyperbolic spinors corresponding to alternative frame. Adv. Appl. Clifford Algebras. 25,
799–810 (2015).
-
Erişir, T., Kardağ, N. C.: Spinor representations of involute evolute curves in E3. Fundam. Appl. Math. 2, 148–155 (2019).
-
Erişir, T., Öztaş, H. K.: Spinor equations of successor curves. Univers. J. Math. Appl. 5 32–41 (2022).
-
Frenet, F.: Sur les courbes à double courbure. J. Math. Pures Appl. 17, 437–447 (1852).
-
Fukunaga, T., Takahashi, M.: Existence conditions of framed curves for smooth curves. J. Geom. 108(2), 763–774 (2017).
-
Gök, İ., Okuyucu, O. Z., Ekmekçi, N., Yaylı, Y.: On Mannheim partner curves in the three-dimensional Lie groups. Miskolc Math. Notes. 15(2),
467–479 (2014).
-
Hladik, J.: Spinors in Physics, Springer Science & Business Media, New York (1999).
-
Honda, S.: Rectifying developable surfaces of framed base curves and framed helices. In Singularities in Generic Geometry. Mathematical Society
of Japan. 78, 273–292 (2018).
-
Honda, S., Takahashi, M.: Bertrand and Mannheim curves of framed curves in the 3-dimensional Euclidean space. Turk. J. Math. 44, 883–899
(2020).
-
Honda, S., Takahashi, M.: Framed curves in the Euclidean space. Adv. Geom. 16(3), 265–276 (2016).
-
Honda, S., Takahashi, M.: Evolutes and focal surfaces of framed immersions in the Euclidean space. Proceedings of the Royal Society of
Edinburgh Section A: Mathematics. 150, 497–516 (2020).
-
Honda, S., Takahashi, M.: Evolutes of framed immersions in the Euclidean space. Hokkaido University Preprint Series in Mathematics. 1095,
1–24 (2016).
-
Izumiya, S., Takeuchi, N.: Generic properties of helices and Bertrand curves. J. Geom. 74, 97–109 (2002).
-
İşbilir, Z., Do˘gan Yazıcı, B., Tosun, M.: The spinor representations of framed Bertrand curves. Filomat. 37(9), 2831-–2843 (2023).
-
İşbilir, Z., Do˘gan Yazıcı, B., Tosun, M.: Spinor representations of framed curves in the three-dimensional Lie groups. Journal of Dynamical Systems
and Geometric Theories. 21(1), 61–83 (2023).
-
İşbilir, Z., Do˘gan Yazıcı, B., Tosun, M.: Spinor representations of a curve with Frenet-type frame in Myller configuration for 3-dimensional
Lie groups. In the VII World Congress of Turkic World Mathematicians (TWMS Congress-2023), 377–388, 20-23 September 2023,
Turkestan, Kazakhstan.
-
Ketenci, Z., Erişir, T., Güngör, M. A.: A construction of hyperbolic spinors according to Frenet frame in Minkowski space. Journal of Dynamical
Systems and Geometric Theories. 13, 179–193 (2015).
-
Kişi, İ., Tosun, M.: Spinor Darboux equations of curves in Euclidean 3-space. Math. Morav. 19, 87–93 (2015).
-
Kolev, B.: Lie groups and mechanics: An introduction. J. Nonlinear Math. Phys. 11(4), 480–498 (2004).
-
Li, Y., Liu, S., Wang, Z.: Tangent developables and Darboux developables of framed curves. Topol. Appl. 301, 107526 (2021).
-
Liu, H., Wang, F.: Mannheim partner curves in 3-space. J. Geom. 88, 120–126 (2008).
-
Lounesto, P.: Clifford algebras and spinors. In Clifford Algebras and Their Applications in Mathematical Physics. Springer, Dordrecht,
25–37 (1986).
-
Mak, M.: Natural and conjugate mates of Frenet curves in three-dimensional Lie group. Commun. Fac. Sci. Univ. Ank. Ser. A1. Math. Stat. 70(1),
522–540 (2021).
-
A. Mannheim, Paris C.R. 86, 1254-–1256 (1878).
-
Okuyucu, O. Z., Do˘gan Yazıcı, B.: Generalized Bertrand and Mannheim curves in 3D Lie groups. Fundam. J. Math. Appl. 5(3), 201–209 (2022).
-
Okuyucu, O. Z., Gök, ˙I., Yaylı, Y., Ekmekçi, N.: Slant helices in the three-dimensional Lie groups. Appl. Math. Comput. 221, 672–683 (2013).
-
Okuyucu, O. Z., Gök, ˙I., Yaylı, Y., Ekmekçi, N.: Bertrand curves in the three-dimensional Lie groups. Miskolc Math. Notes. 17(2), 999–1010
(2017).
-
Okuyucu, O. Z., Yıldız, Ö. G., Tosun, M.: Spinor Frenet equations in three dimensional Lie groups. Adv. Appl. Clifford Algebras. 26, 1341–1348
(2016).
-
Pauli, W.: Zur quantenmechanik des magnetischen elektrons. Zeitschrift fr Physik. 43, 601–632 (1927).
-
Popovic, N., Eren, K., Savic, A., Ersoy, S.: Framed curve families induced by real and complex coupled dispersionless-type equations. Mathematics.
11(16), 3531 (2023).
-
Rosenfeld, B.: Geometry of Lie groups. Kluwer Academic Publishers (1997).
-
Sattinger, D. H.,Weaver, O. L.: Lie groups and algebras with applications to physics. Geometry and mechanics. Springer, New York (1986).
-
Serret, J. A.: Sur un théorème relatif aux courbes à double courbure. J. Math. Pures Appl. 16, 499–500 (1851).
-
Şenyurt, S., Çalı¸skan, A.: Spinor formulation of Sabban frame of curve on S2. Pure Math. Sci. 4, 37–42 (2015).
-
Takahashi, M.: Legendre curves in the unit spherical bundle over the unit sphere and evolutes. Contemp. Math. 675, 337–355 (2016).
-
Tarakçıoğlu, M., Erişir, T., Güngör, M. A., Tosun, M.: The hyperbolic spinor representation of transformations in $R^3_1$
by means of split quaternions.
Adv. Appl. Clifford Algebras. 28(1), 26 (2018).
-
Torres del Castillo, G. F.: 3-D Spinors, Spin-Weighted Functions and Their Applications (Vol. 32), Springer Science & Business Media,
Boston, (2003).
-
Torres del Castillo, G. F., Barrales, G. S.: Spinor formulation of the differential geometry of curve. Rev. Colomb. de Mat. 38, 27–34 (2004).
-
Tuncer, O. O.: Framed Bertrand and Mannheim curves in three-dimensional space forms of non-zero constant curvatures. Int. Electron. J. Geom.
17, 447–465 (2024).
-
Ünal, D., Kişi, İ., Tosun, M.: Spinor Bishop equations of curves in Euclidean 3-space. Adv. Appl. Clifford Algebras. 23, 757–765 (2013).
-
Vaz, Jr. J., da Rocha, Jr. R.: An Introduction to Clifford Algebras and Spinors, Oxford University Press (2016).
-
Vivarelli, M. D.: Development of spinors descriptions of rotational mechanics from Euler’s rigid body displacement theorem. Celest. Mech. 32,
193–207 (1984).
-
Wang, F., Liu, H.: Mannheim partner curves in 3-Euclidean space. Mathematics in Practice and Theory. 37, 141–143 (2007).
-
Wang, Y., Pei, D., Gao, R.: Generic properties of framed rectifying curves. Mathematics. 7(1), 37 (2019).