Research Article
BibTex RIS Cite

Visualization in Teaching Computer Science and Mathematics

Year 2015, Volume: 1 Issue: 2, 77 - 91, 31.10.2018

Abstract

In this article we present several possibilities of the use of educational software for visualization in teaching computer science and mathematics. The ICT help to achieve a higher quality, expertness, and effectiveness compared to the teaching resources and tools, which have been used until now. We show some examples of computer aided education in subjects of mathematics and computer science. This teaching is connected to the goals described in the new Slovak Curriculum ISCED 2 for education of these subjects at the secondary education. The place of different tools, such as Imagine, Baltie, or GeoGebra as a tool for teaching and learning will be discussed. The relationships between mathematics, informatics, and other subjects, which are supported by educational software, are a very important part of integration of ICT in education.

References

  • Anderson, L., & al. (2011). A Taxonomy for Learning, Teaching a Assessing of Educational Objectives. New York, Longman.
  • Billich, M. (2008). The use of geometric place in problem solving. In Teaching Mathematics: Innovation, New Trends, Research (pp. 7 − 14). Ružomberok, Catholic University.
  • Baláková, G. (2011). The use of program GeoGebra in subject computer science. Ružomberok, Catholic University.
  • Círus, L. (2010) Using ICT to support teaching the subject at the 1st Space Grade of primary school. Usta ad Albim Bohemica, 2010.
  • Duatepe, P. A. (2013). Origami and mathematics. In New Challenges in Education. (pp.17-28). Ružomberok, Verbum.
  • Facer, K. (2004). Computer Games and Learning. A discussion paper, FutureLab, UK, 2004. [Online] Available: http://admin.futurelab.org.uk/resources/documents/discussion_papers/Computer_Games_and_Learning_discpaper.pdf
  • Gunčaga J., & Fulier J., & Eisenmann P. (2008). Modernization and innovation of teaching mathematics analysis. Ružomberok, Catholic University. (Slovak).
  • Gunčaga, J., & Majherová, J. (2012). GeoGebra as a motivational tool for teaching and learning in Slovakia. In North American GeoGebra Journal Vol. 1/ 2012. (pp. 45-48). [Online] Available: http://www.ggbmidwest.com/ojs-2.3.4/index.php/ ggbj/article/view/4
  • Gülseçen, S., & Çelik, S., & Özdemir, S., & Uğraş, T., & Özcan, M. (2013). Education in smart cities. In New Challenges in Education. (pp. 126-129). Ružomberok, Verbum.
  • Herendiné-Kónya, E. (2014). How can high school students solve problems based on the concept of area measurement? In Ambrus, A., & Vásárhelyi, É. (Eds.), Problem Solving in Mathematics Education, Proceedings of the 15th ProMath Conference, Mathematics Teaching and Education Center (pp. 95-107). Budapest, ELTE.
  • Hohenwarter, M., & Lavicza, Z. (2010). Gaining momentum: GeoGebra inspires educators and students around the world. GeoGebra the New Language for the Third Millennium. Zigotto Printing & Publishing House Galati-Romania, Vol. 1 No.1. pp. 1-6.
  • ISCED 2 – new Slowak curriculum Mathematics (2010). [Online] Available: http://www.statpedu.sk/files/documents/svp/2stzs/isced2/vzdelavacie_oblasti/matematika_isced2.pdf
  • Kelemenová, A. (2005). Lindenmayer‘s systems and their creator. In Kelemen, J., & Kvasnička, V. (Eds.), Cognition and artificial life V. (pp. 235-250). Opava, Silesian University in Opava.
  • Kopáčová, J. & al. (2014). Mathematical thinking of children. Ružomberok, Verbum. (slovak) Krech, G., & Krech I. (2009). On some non-transitive relation. In Proceedings of ICPM’09. Liberec.
  • Louca, L. (2005). Creating games or developing programs? Documenting the use of StageCast Creator as modeling tool in elementary science. In Zacharia, Z., & Constantinou, C. (eds.), Computer Based Learning in Science. (pp. 556-569). Žilina, University of Zilina.
  • Majherová, J. (2009). Cognitive aspects of L systems based models utilization. In Kelemen, J., & Kvasnička, V., & Rybár, J. (Eds.), Cognition and artificial life. (pp. 185 – 192). Opava, Slezská univerzita v Opavě. (slovak)
  • Majherová, J., & Gunčaga, J. (2011). Geometry and modeling of plants in secondary education. In Plocki, A., & Krech, I. (eds.) Matematyka w przyrodzie – matematyka i przyroda w kszalceniu powszechnym (pp. 39-46). Nowy Sacz, Wydawvnictvo naukowe Panstwowej Wyzszej szkoly Zawodowej w Nowym Saczu. Mei-Chuen Lin, J. & Long-Yuen Yen & Mei-Ching Yang & Chiao-Fun Chen. (n.d.) Teaching Computer Programming in Elementary Schools: A Pilot Study. [Online] Available: http://handbook5.com/t/teaching-computer-programming-in-elementaryschools-a-pilot-study-w605.html
  • Musa S., & Ziatdinov, R., & Griffiths, C. (2013). Introduction to computer animation and its possible educational applications. In New Challenges in Education. (pp. 177-204). Ružomberok, Verbum.
  • Prensky, M. (2001) Digital Game-based Learning. New York: McGraw-Hill.
  • Ranostaj, V. (2010). Applets in Goeogebra. [Online]. Available at http://www.geogebra.org/en/upload/files/Slovak/Ranostaj/Prezentacia.html
  • Whatisbaltie? [Online] Available: http://www.sgpsys.com/en/whatisbaltie.asp
  • Slovak Geogebra Institute. [Online] Available: http://geogebra.ssgg.sk
Year 2015, Volume: 1 Issue: 2, 77 - 91, 31.10.2018

Abstract

References

  • Anderson, L., & al. (2011). A Taxonomy for Learning, Teaching a Assessing of Educational Objectives. New York, Longman.
  • Billich, M. (2008). The use of geometric place in problem solving. In Teaching Mathematics: Innovation, New Trends, Research (pp. 7 − 14). Ružomberok, Catholic University.
  • Baláková, G. (2011). The use of program GeoGebra in subject computer science. Ružomberok, Catholic University.
  • Círus, L. (2010) Using ICT to support teaching the subject at the 1st Space Grade of primary school. Usta ad Albim Bohemica, 2010.
  • Duatepe, P. A. (2013). Origami and mathematics. In New Challenges in Education. (pp.17-28). Ružomberok, Verbum.
  • Facer, K. (2004). Computer Games and Learning. A discussion paper, FutureLab, UK, 2004. [Online] Available: http://admin.futurelab.org.uk/resources/documents/discussion_papers/Computer_Games_and_Learning_discpaper.pdf
  • Gunčaga J., & Fulier J., & Eisenmann P. (2008). Modernization and innovation of teaching mathematics analysis. Ružomberok, Catholic University. (Slovak).
  • Gunčaga, J., & Majherová, J. (2012). GeoGebra as a motivational tool for teaching and learning in Slovakia. In North American GeoGebra Journal Vol. 1/ 2012. (pp. 45-48). [Online] Available: http://www.ggbmidwest.com/ojs-2.3.4/index.php/ ggbj/article/view/4
  • Gülseçen, S., & Çelik, S., & Özdemir, S., & Uğraş, T., & Özcan, M. (2013). Education in smart cities. In New Challenges in Education. (pp. 126-129). Ružomberok, Verbum.
  • Herendiné-Kónya, E. (2014). How can high school students solve problems based on the concept of area measurement? In Ambrus, A., & Vásárhelyi, É. (Eds.), Problem Solving in Mathematics Education, Proceedings of the 15th ProMath Conference, Mathematics Teaching and Education Center (pp. 95-107). Budapest, ELTE.
  • Hohenwarter, M., & Lavicza, Z. (2010). Gaining momentum: GeoGebra inspires educators and students around the world. GeoGebra the New Language for the Third Millennium. Zigotto Printing & Publishing House Galati-Romania, Vol. 1 No.1. pp. 1-6.
  • ISCED 2 – new Slowak curriculum Mathematics (2010). [Online] Available: http://www.statpedu.sk/files/documents/svp/2stzs/isced2/vzdelavacie_oblasti/matematika_isced2.pdf
  • Kelemenová, A. (2005). Lindenmayer‘s systems and their creator. In Kelemen, J., & Kvasnička, V. (Eds.), Cognition and artificial life V. (pp. 235-250). Opava, Silesian University in Opava.
  • Kopáčová, J. & al. (2014). Mathematical thinking of children. Ružomberok, Verbum. (slovak) Krech, G., & Krech I. (2009). On some non-transitive relation. In Proceedings of ICPM’09. Liberec.
  • Louca, L. (2005). Creating games or developing programs? Documenting the use of StageCast Creator as modeling tool in elementary science. In Zacharia, Z., & Constantinou, C. (eds.), Computer Based Learning in Science. (pp. 556-569). Žilina, University of Zilina.
  • Majherová, J. (2009). Cognitive aspects of L systems based models utilization. In Kelemen, J., & Kvasnička, V., & Rybár, J. (Eds.), Cognition and artificial life. (pp. 185 – 192). Opava, Slezská univerzita v Opavě. (slovak)
  • Majherová, J., & Gunčaga, J. (2011). Geometry and modeling of plants in secondary education. In Plocki, A., & Krech, I. (eds.) Matematyka w przyrodzie – matematyka i przyroda w kszalceniu powszechnym (pp. 39-46). Nowy Sacz, Wydawvnictvo naukowe Panstwowej Wyzszej szkoly Zawodowej w Nowym Saczu. Mei-Chuen Lin, J. & Long-Yuen Yen & Mei-Ching Yang & Chiao-Fun Chen. (n.d.) Teaching Computer Programming in Elementary Schools: A Pilot Study. [Online] Available: http://handbook5.com/t/teaching-computer-programming-in-elementaryschools-a-pilot-study-w605.html
  • Musa S., & Ziatdinov, R., & Griffiths, C. (2013). Introduction to computer animation and its possible educational applications. In New Challenges in Education. (pp. 177-204). Ružomberok, Verbum.
  • Prensky, M. (2001) Digital Game-based Learning. New York: McGraw-Hill.
  • Ranostaj, V. (2010). Applets in Goeogebra. [Online]. Available at http://www.geogebra.org/en/upload/files/Slovak/Ranostaj/Prezentacia.html
  • Whatisbaltie? [Online] Available: http://www.sgpsys.com/en/whatisbaltie.asp
  • Slovak Geogebra Institute. [Online] Available: http://geogebra.ssgg.sk
There are 22 citations in total.

Details

Primary Language English
Journal Section ARTICLES
Authors

Janka Majherová This is me

Ján Gunčaga This is me

Hedviga Petrušková This is me

Publication Date October 31, 2018
Published in Issue Year 2015 Volume: 1 Issue: 2

Cite

APA Majherová, J., Gunčaga, J., & Petrušková, H. (2018). Visualization in Teaching Computer Science and Mathematics. Istanbul Journal of Innovation in Education, 1(2), 77-91.
AMA Majherová J, Gunčaga J, Petrušková H. Visualization in Teaching Computer Science and Mathematics. Istanbul Journal of Innovation in Education. October 2018;1(2):77-91.
Chicago Majherová, Janka, Ján Gunčaga, and Hedviga Petrušková. “Visualization in Teaching Computer Science and Mathematics”. Istanbul Journal of Innovation in Education 1, no. 2 (October 2018): 77-91.
EndNote Majherová J, Gunčaga J, Petrušková H (October 1, 2018) Visualization in Teaching Computer Science and Mathematics. Istanbul Journal of Innovation in Education 1 2 77–91.
IEEE J. Majherová, J. Gunčaga, and H. Petrušková, “Visualization in Teaching Computer Science and Mathematics”, Istanbul Journal of Innovation in Education, vol. 1, no. 2, pp. 77–91, 2018.
ISNAD Majherová, Janka et al. “Visualization in Teaching Computer Science and Mathematics”. Istanbul Journal of Innovation in Education 1/2 (October 2018), 77-91.
JAMA Majherová J, Gunčaga J, Petrušková H. Visualization in Teaching Computer Science and Mathematics. Istanbul Journal of Innovation in Education. 2018;1:77–91.
MLA Majherová, Janka et al. “Visualization in Teaching Computer Science and Mathematics”. Istanbul Journal of Innovation in Education, vol. 1, no. 2, 2018, pp. 77-91.
Vancouver Majherová J, Gunčaga J, Petrušková H. Visualization in Teaching Computer Science and Mathematics. Istanbul Journal of Innovation in Education. 2018;1(2):77-91.