Derleme
BibTex RIS Kaynak Göster

Genlerin Sportif Başarıya Etkisi

Yıl 2024, , 10 - 17, 31.07.2024
https://doi.org/10.48133/igdirsbd.1413872

Öz

Spor performansı, yetenekli bir sporcuyu bir şampiyona dönüştürmek için birbiriyle yeterince anlaşılmayan ancak karmaşık bir şekilde etkileşime giren sayısız faktörün birleşiminden kaynaklandığı düşünülmektedir. Spor bilimleri alanında performansın hem antrenmanın hem de genetik faktörlerin sonucu olduğu anlaşılmaktadır. Bununla birlikte, şampiyonların ne ölçüde doğup büyüdüğü, yeteneklerin belirlenmesi ve yönetiminin yanı sıra spor federasyonlarının sınırlı kaynakları yüksek performanslı programların optimizasyonuna nasıl tahsis ettiği konusunda da çıkarımlar içerdiğinden, hala oldukça ilgi çekici bir sorudur. Bireysel performans eşikleri genetik yapımız tarafından belirlenmekte ve eğitim, genetik potansiyelin gerçekleştirildiği süreç olarak tanımlanabilmektedir. Uygun bir genetik profil, optimal bir antrenman ortamıyla birleştirildiğinde elit atletik performans için oldukça önemlidir; ancak çok az gen sürekli olarak elit atletik performansla ilişkilidir. Literatür taramalarında özellikle iki gen varyantı, ACE I/D ve ACTN3 R577X, dayanıklılık ve güçle ilgili performansla ilişkilendirilmiştir. Genç sporcularda genetik çeşitliliğin atletik performansla ilişkisi hakkında çok az bilgi mevcuttur; ancak genetik test, yetenek belirleme aracı olarak giderek daha popüler hale geliyor. Bu tür testlerin kullanımındaki bu artışa rağmen, atletik yeteneği tahmin etmede genetik testlerin geleneksel yetenek seçimi tekniklerine göre yararlılığına ilişkin kanıtlar eksiktir ve çocuklarda bu tür testleri çevreleyen etik konulara dikkatle yaklaşılmalıdır. Genetik faktörlerin, futbolcuların yetenekleri, dayanıklılıkları, hızları ve diğer önemli özellikleri üzerinde nasıl etkili olduğunu anlamak, spor bilimine yeni perspektifler kazandırabilmektedir. Futbol, dünyanın en popüler sporlarından biri olarak bilinmekte ve futbolcuların sahadaki performansları, sadece antrenman ve yetenekle değil, aynı zamanda genetik miraslarıyla da şekillenmektedir. Sonuç olarak, spor performansı, genetik ve antrenman faktörleri arasındaki etkileşimin bir sonucudur. Bu derlemenin kapsamlılığı, genetiğin spor performansı üzerindeki etkisini değerlendirmek için kullanılan en yaygın yöntemlerin açıklanmasıyla desteklenmektedir. Uygulamalı bir perspektiften bakıldığında, bu derlemede, atletik performansın genetik ile ilişkisinde mevcut literatür verileri dikkate alınarak özetlenmiştir.

Kaynakça

  • Alfred, T., Ben-Shlomo, Y., Cooper, R., Hardy, R., Cooper, C., Deary, I. J., Gunnell, D., Harris, S. E., Kumari, M., Martin, R. M., Moran, C. N., Pitsiladis, Y. P., Ring, S. M., Sayer, A. A., Smith, G. D., Starr, J. M., Kuh, D., Day, I. N., & HALCyon study team (2011). ACTN3 genotype, athletic status, and life course physical capability: meta-analysis of the published literature and findings from nine studies. Human mutation, 32(9), 1008–1018. https://doi.org/10.1002/humu.21526.
  • Arboleda, V. A., & Vilain, E. (2011). The evolution of the search for novel genes in mammalian sex determination: from mice to men. Molecular genetics and metabolism, 104(1-2), 67–71. https://doi.org/10.1016/j.ymgme.2011.06.024.
  • Bouchard, C., Leon, A. S., Rao, D. C., Skinner, J. S., Wilmore, J. H., & Gagnon, J. (1995). The HERITAGE family study. Aims, design, and measurement protocol. Medicine and science in sports and exercise, 27(5), 721–729.
  • Bouchard, C., Rankinen, T., Chagnon, Y. C., Rice, T., Pérusse, L., Gagnon, J., ... & Rao, D. C. (2000). Genomic scan for maksimal oxygen uptake and its response to training in the HERITAGE Family Study. Journal of Applied Physiology, 88(2), 551-559.
  • Bouchard, C., Sarzynski, M. A., Rice, T. K., Kraus, W. E., Church, T. S., Sung, Y. J., ... & Rankinen, T. (2011). Genomic predictors of the maksimal O2 uptake response to standardized exercise training programs. Journal of applied physiology, 110(5), 1160-1170.
  • Bouchard, C., Sarzynski, M. A., Rice, T. K., Kraus, W. E., Church, T. S., Sung, Y. J., ... & Rankinen, T. (2011). Genomic predictors of the maksimal O2 uptake response to standardized exercise training programs. Journal of applied physiology, 110(5), 1160-1170.
  • Charles, J. D., & Bejan, A. (2009). The evolution of speed, size and shape in modern athletics. Journal of Experimental Biology, 212(15), 2419-2425.
  • Collins, A., Hill, L. E., Chandramohan, Y., Whitcomb, D., Droste, S. K., & Reul, J. M. (2009). Exercise improves cognitive responses to psychological stress through enhancement of epigenetic mechanisms and gene expression in the dentate gyrus. PloS one, 4(1), e4330.
  • Ericsson, K. A., Krampe, R. T., & Tesch-Römer, C. (1993). The role of deliberate practice in the acquisition of expert performance. Psychological review, 100(3), 363.
  • Ericsson, K. A., Nandagopal, K., & Roring, R. W. (2009). Toward a science of exceptional achievement: attaining superior performance through deliberate practice. Annals of the New York Academy of Sciences, 1172, 199–217. https://doi.org/10.1196/annals.1393.001.
  • Eynon, N., Hanson, E. D., Lucia, A., Houweling, P. J., Garton, F., North, K. N., & Bishop, D. J. (2013). Genes for elite power and sprint performance: ACTN3 leads the way. Sports medicine (Auckland, N.Z.), 43(9), 803–817. https://doi.org/10.1007/s40279-013-0059-4.
  • Eynon, N., Ruiz, J. R., Femia, P., Pushkarev, V. P., Cieszczyk, P., Maciejewska-Karlowska, A., Sawczuk, M., Dyatlov, D. A., Lekontsev, E. V., Kulikov, L. M., Birk, R., Bishop, D. J., & Lucia, A. (2012). The ACTN3 R577X polymorphism across three groups of elite male European athletes. PloS one, 7(8), e43132. https://doi.org/10.1371/journal.pone.0043132.
  • Guth, L. M., & Roth, S. M. (2013). Genetic influence on athletic performance. Current opinion in pediatrics, 25(6), 653-658. https://doi.org/10.1097/MOP.0b013e3283659087.
  • Kousta, E., Papathanasiou, A., & Skordis, N. (2010). Sex determination and disorders of sex development according to the revised nomenclature and classification in 46,XX individuals. Hormones (Athens, Greece), 9(3), 218–131. https://doi.org/10.14310/horm.2002.1272.
  • Kraus, W. E., Torgan, C. E., Duscha, B. D., Norris, J., Brown, S. A., Cobb, F. R., Bales, C. W., Annex, B. H., Samsa, G. P., Houmard, J. A., & Slentz, C. A. (2001). Studies of a targeted risk reduction intervention through defined exercise (STRRIDE). Medicine and science in sports and exercise, 33(10), 1774–1784. https://doi.org/10.1097/00005768-200110000-00025.
  • Lettre G. (2009). Genetic regulation of adult stature. Current opinion in pediatrics, 21(4), 515–522. https://doi.org/10.1097/MOP.0b013e32832c6dce.
  • Lupski, J. R., Belmont, J. W., Boerwinkle, E., & Gibbs, R. A. (2011). Clan genomics and the complex architecture of human disease. Cell, 147(1), 32–43. https://doi.org/10.1016/j.cell.2011.09.008.
  • Ma, F., Yang, Y., Li, X., Zhou, F., Gao, C., Li, M., & Gao, L. (2013). The association of sport performance with ACE and ACTN3 genetic polymorphisms: a systematic review and meta-analysis. PloS one, 8(1), e54685. https://doi.org/10.1371/journal.pone.0054685.
  • Montgomery, H. E., Marshall, R., Hemingway, H., Myerson, S., Clarkson, P., Dollery, C., Hayward, M., Holliman, D. E., Jubb, M., World, M., Thomas, E. L., Brynes, A. E., Saeed, N., Barnard, M., Bell, J. D., Prasad, K., Rayson, M., Talmud, P. J., & Humphries, S. E. (1998). Human gene for physical performance. Nature, 393(6682), 221–222. https://doi.org/10.1038/30374
  • Morss, G. M., Jordan, A. N., Skinner, J. S., Dunn, A. L., Church, T. S., Earnest, C. P., Kampert, J. B., Jurca, R., & Blair, S. N. (2004). Dose Response to Exercise in Women aged 45-75 yr (DREW): design and rationale. Medicine and science in sports and exercise, 36(2), 336–344. https://doi.org/10.1249/01.MSS.0000113738.06267.E5.
  • Puthucheary, Z., Skipworth, J. R., Rawal, J., Loosemore, M., Van Someren, K., & Montgomery, H. E. (2011). Genetic influences in sport and physical performance. Sports medicine (Auckland, N.Z.), 41(10), 845–859. https://doi.org/10.2165/11593200-000000000-00000.
  • Rankinen, T., Roth, S. M., Bray, M. S., Loos, R., Pérusse, L., Wolfarth, B., Hagberg, J. M., & Bouchard, C. (2010). Advances in exercise, fitness, and performance genomics. Medicine and science in sports and exercise, 42(5), 835–846. https://doi.org/10.1249/MSS.0b013e3181d86cec.
  • Rigat, B., Hubert, C., Alhenc-Gelas, F., Cambien, F., Corvol, P., & Soubrier, F. (1990). An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. The Journal of clinical investigation, 86(4), 1343–1346. https://doi.org/10.1172/JCI114844.
  • Roth, S. M. (2011). MicroRNAs: playing a big role in explaining skeletal muscle adaptation?. Journal of Applied Physiology, 110(2), 301-302.
  • Scott, R. A., Wilson, R. H., Goodwin, W. H., Moran, C. N., Georgiades, E., Wolde, B., & Pitsiladis, Y. P. (2005). Mitochondrial DNA lineages of elite Ethiopian athletes. Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology, 140(3), 497–503. https://doi.org/10.1016/j.cbpc.2004.11.014.
  • Stewart, C. E., & Rittweger, J. (2006). Adaptive processes in skeletal muscle: molecular regulators and genetic influences. Journal of musculoskeletal & neuronal interactions, 6(1), 73–86.
  • Tucker, R., & Collins, M. (2010). The science of sex verification and athletic performance. International journal of sports physiology and performance, 5(2), 127–139. https://doi.org/10.1123/ijspp.5.2.127.
  • Tucker, R., & Collins, M. (2012). Athletic performance and risk of injury: can genes explain all?. Dialog Cardiovasc Med, 17(1), 31-39.
  • Vaeyens, R., Güllich, A., Warr, C. R., & Philippaerts, R. (2009). Talent identification and promotion programmes of Olympic athletes. Journal of sports sciences, 27(13), 1367–1380. https://doi.org/10.1080/02640410903110974.
  • Weedon, M. N., & Frayling, T. M. (2008). Reaching new heights: insights into the genetics of human stature. Trends in genetics: TIG, 24(12), 595–603. https://doi.org/10.1016/j.tig.2008.09.006.
  • Yang, N., Garton, F., & North, K. (2009). alpha-actinin-3 and performance. Medicine and sport science, 54, 88–101. https://doi.org/10.1159/000235698.
  • Yang, N., MacArthur, D. G., Gulbin, J. P., Hahn, A. G., Beggs, A. H., Easteal, S., & North, K. (2003). ACTN3 genotype is associated with human elite athletic performance. American journal of human genetics, 73(3), 627–631. https://doi.org/10.1086/377590.

THE EFFECT OF GENES AND TRAINING ON SPORTS SUCCESS

Yıl 2024, , 10 - 17, 31.07.2024
https://doi.org/10.48133/igdirsbd.1413872

Öz

Sports performance is thought to result from a combination of numerous factors that are poorly understood but interact with each other in complex ways to transform a talented athlete into a champion. In the field of sports science, it is understood that performance is the result of both training and genetic factors. However, the extent to which champions are born and bred is still a very interesting question, as it has implications for the identification and management of talent, as well as for how sports federations allocate limited resources to the optimization of high-performance programmes. Individual performance thresholds are determined by our genetic structure, and training can be defined as the process by which genetic potential is realized. An appropriate genetic profile, when combined with an optimal training environment, is crucial for elite athletic performance; but very few genes are consistently associated with elite athletic performance. In literature reviews, two gene variants in particular, ACE I/D and ACTN3 R577X, have been associated with endurance and strength-related performance. Little information is available on the relationship of genetic variation to athletic performance in young athletes; however, genetic testing is becoming increasingly popular as a means of identifying talent. Despite this increase in the use of such tests, evidence regarding the usefulness of genetic testing over traditional talent selection techniques in predicting athletic ability is lacking, and ethical issues surrounding such testing in children should be approached with caution. Understanding how genetic factors affect football players' abilities, endurance, speed and other important characteristics can provide new perspectives to sports science. Football is known as one of the most popular sports in the world, and the performance of football players on the field is shaped not only by training and talent, but also by their genetic heritage. In conclusion, sports performance is the result of the interaction between genetic and training factors. The comprehensiveness of this review is supported by the description of the most common methods used to evaluate the impact of genetics on sports performance. From an applied perspective, this review summarizes existing literature data on the relationship between athletic performance and genetics.

Kaynakça

  • Alfred, T., Ben-Shlomo, Y., Cooper, R., Hardy, R., Cooper, C., Deary, I. J., Gunnell, D., Harris, S. E., Kumari, M., Martin, R. M., Moran, C. N., Pitsiladis, Y. P., Ring, S. M., Sayer, A. A., Smith, G. D., Starr, J. M., Kuh, D., Day, I. N., & HALCyon study team (2011). ACTN3 genotype, athletic status, and life course physical capability: meta-analysis of the published literature and findings from nine studies. Human mutation, 32(9), 1008–1018. https://doi.org/10.1002/humu.21526.
  • Arboleda, V. A., & Vilain, E. (2011). The evolution of the search for novel genes in mammalian sex determination: from mice to men. Molecular genetics and metabolism, 104(1-2), 67–71. https://doi.org/10.1016/j.ymgme.2011.06.024.
  • Bouchard, C., Leon, A. S., Rao, D. C., Skinner, J. S., Wilmore, J. H., & Gagnon, J. (1995). The HERITAGE family study. Aims, design, and measurement protocol. Medicine and science in sports and exercise, 27(5), 721–729.
  • Bouchard, C., Rankinen, T., Chagnon, Y. C., Rice, T., Pérusse, L., Gagnon, J., ... & Rao, D. C. (2000). Genomic scan for maksimal oxygen uptake and its response to training in the HERITAGE Family Study. Journal of Applied Physiology, 88(2), 551-559.
  • Bouchard, C., Sarzynski, M. A., Rice, T. K., Kraus, W. E., Church, T. S., Sung, Y. J., ... & Rankinen, T. (2011). Genomic predictors of the maksimal O2 uptake response to standardized exercise training programs. Journal of applied physiology, 110(5), 1160-1170.
  • Bouchard, C., Sarzynski, M. A., Rice, T. K., Kraus, W. E., Church, T. S., Sung, Y. J., ... & Rankinen, T. (2011). Genomic predictors of the maksimal O2 uptake response to standardized exercise training programs. Journal of applied physiology, 110(5), 1160-1170.
  • Charles, J. D., & Bejan, A. (2009). The evolution of speed, size and shape in modern athletics. Journal of Experimental Biology, 212(15), 2419-2425.
  • Collins, A., Hill, L. E., Chandramohan, Y., Whitcomb, D., Droste, S. K., & Reul, J. M. (2009). Exercise improves cognitive responses to psychological stress through enhancement of epigenetic mechanisms and gene expression in the dentate gyrus. PloS one, 4(1), e4330.
  • Ericsson, K. A., Krampe, R. T., & Tesch-Römer, C. (1993). The role of deliberate practice in the acquisition of expert performance. Psychological review, 100(3), 363.
  • Ericsson, K. A., Nandagopal, K., & Roring, R. W. (2009). Toward a science of exceptional achievement: attaining superior performance through deliberate practice. Annals of the New York Academy of Sciences, 1172, 199–217. https://doi.org/10.1196/annals.1393.001.
  • Eynon, N., Hanson, E. D., Lucia, A., Houweling, P. J., Garton, F., North, K. N., & Bishop, D. J. (2013). Genes for elite power and sprint performance: ACTN3 leads the way. Sports medicine (Auckland, N.Z.), 43(9), 803–817. https://doi.org/10.1007/s40279-013-0059-4.
  • Eynon, N., Ruiz, J. R., Femia, P., Pushkarev, V. P., Cieszczyk, P., Maciejewska-Karlowska, A., Sawczuk, M., Dyatlov, D. A., Lekontsev, E. V., Kulikov, L. M., Birk, R., Bishop, D. J., & Lucia, A. (2012). The ACTN3 R577X polymorphism across three groups of elite male European athletes. PloS one, 7(8), e43132. https://doi.org/10.1371/journal.pone.0043132.
  • Guth, L. M., & Roth, S. M. (2013). Genetic influence on athletic performance. Current opinion in pediatrics, 25(6), 653-658. https://doi.org/10.1097/MOP.0b013e3283659087.
  • Kousta, E., Papathanasiou, A., & Skordis, N. (2010). Sex determination and disorders of sex development according to the revised nomenclature and classification in 46,XX individuals. Hormones (Athens, Greece), 9(3), 218–131. https://doi.org/10.14310/horm.2002.1272.
  • Kraus, W. E., Torgan, C. E., Duscha, B. D., Norris, J., Brown, S. A., Cobb, F. R., Bales, C. W., Annex, B. H., Samsa, G. P., Houmard, J. A., & Slentz, C. A. (2001). Studies of a targeted risk reduction intervention through defined exercise (STRRIDE). Medicine and science in sports and exercise, 33(10), 1774–1784. https://doi.org/10.1097/00005768-200110000-00025.
  • Lettre G. (2009). Genetic regulation of adult stature. Current opinion in pediatrics, 21(4), 515–522. https://doi.org/10.1097/MOP.0b013e32832c6dce.
  • Lupski, J. R., Belmont, J. W., Boerwinkle, E., & Gibbs, R. A. (2011). Clan genomics and the complex architecture of human disease. Cell, 147(1), 32–43. https://doi.org/10.1016/j.cell.2011.09.008.
  • Ma, F., Yang, Y., Li, X., Zhou, F., Gao, C., Li, M., & Gao, L. (2013). The association of sport performance with ACE and ACTN3 genetic polymorphisms: a systematic review and meta-analysis. PloS one, 8(1), e54685. https://doi.org/10.1371/journal.pone.0054685.
  • Montgomery, H. E., Marshall, R., Hemingway, H., Myerson, S., Clarkson, P., Dollery, C., Hayward, M., Holliman, D. E., Jubb, M., World, M., Thomas, E. L., Brynes, A. E., Saeed, N., Barnard, M., Bell, J. D., Prasad, K., Rayson, M., Talmud, P. J., & Humphries, S. E. (1998). Human gene for physical performance. Nature, 393(6682), 221–222. https://doi.org/10.1038/30374
  • Morss, G. M., Jordan, A. N., Skinner, J. S., Dunn, A. L., Church, T. S., Earnest, C. P., Kampert, J. B., Jurca, R., & Blair, S. N. (2004). Dose Response to Exercise in Women aged 45-75 yr (DREW): design and rationale. Medicine and science in sports and exercise, 36(2), 336–344. https://doi.org/10.1249/01.MSS.0000113738.06267.E5.
  • Puthucheary, Z., Skipworth, J. R., Rawal, J., Loosemore, M., Van Someren, K., & Montgomery, H. E. (2011). Genetic influences in sport and physical performance. Sports medicine (Auckland, N.Z.), 41(10), 845–859. https://doi.org/10.2165/11593200-000000000-00000.
  • Rankinen, T., Roth, S. M., Bray, M. S., Loos, R., Pérusse, L., Wolfarth, B., Hagberg, J. M., & Bouchard, C. (2010). Advances in exercise, fitness, and performance genomics. Medicine and science in sports and exercise, 42(5), 835–846. https://doi.org/10.1249/MSS.0b013e3181d86cec.
  • Rigat, B., Hubert, C., Alhenc-Gelas, F., Cambien, F., Corvol, P., & Soubrier, F. (1990). An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. The Journal of clinical investigation, 86(4), 1343–1346. https://doi.org/10.1172/JCI114844.
  • Roth, S. M. (2011). MicroRNAs: playing a big role in explaining skeletal muscle adaptation?. Journal of Applied Physiology, 110(2), 301-302.
  • Scott, R. A., Wilson, R. H., Goodwin, W. H., Moran, C. N., Georgiades, E., Wolde, B., & Pitsiladis, Y. P. (2005). Mitochondrial DNA lineages of elite Ethiopian athletes. Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology, 140(3), 497–503. https://doi.org/10.1016/j.cbpc.2004.11.014.
  • Stewart, C. E., & Rittweger, J. (2006). Adaptive processes in skeletal muscle: molecular regulators and genetic influences. Journal of musculoskeletal & neuronal interactions, 6(1), 73–86.
  • Tucker, R., & Collins, M. (2010). The science of sex verification and athletic performance. International journal of sports physiology and performance, 5(2), 127–139. https://doi.org/10.1123/ijspp.5.2.127.
  • Tucker, R., & Collins, M. (2012). Athletic performance and risk of injury: can genes explain all?. Dialog Cardiovasc Med, 17(1), 31-39.
  • Vaeyens, R., Güllich, A., Warr, C. R., & Philippaerts, R. (2009). Talent identification and promotion programmes of Olympic athletes. Journal of sports sciences, 27(13), 1367–1380. https://doi.org/10.1080/02640410903110974.
  • Weedon, M. N., & Frayling, T. M. (2008). Reaching new heights: insights into the genetics of human stature. Trends in genetics: TIG, 24(12), 595–603. https://doi.org/10.1016/j.tig.2008.09.006.
  • Yang, N., Garton, F., & North, K. (2009). alpha-actinin-3 and performance. Medicine and sport science, 54, 88–101. https://doi.org/10.1159/000235698.
  • Yang, N., MacArthur, D. G., Gulbin, J. P., Hahn, A. G., Beggs, A. H., Easteal, S., & North, K. (2003). ACTN3 genotype is associated with human elite athletic performance. American journal of human genetics, 73(3), 627–631. https://doi.org/10.1086/377590.
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Antrenman, Egzersiz Fizyolojisi, Egzersiz ve Spor Bilimleri (Diğer)
Bölüm Makaleler
Yazarlar

Nebiye Pelin Türker 0000-0001-6060-3557

Onur Ateş 0009-0003-8581-6438

Yayımlanma Tarihi 31 Temmuz 2024
Gönderilme Tarihi 3 Ocak 2024
Kabul Tarihi 7 Temmuz 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Türker, N. P., & Ateş, O. (2024). Genlerin Sportif Başarıya Etkisi. Iğdır Üniversitesi Spor Bilimleri Dergisi, 7(1), 10-17. https://doi.org/10.48133/igdirsbd.1413872

21116