BibTex RIS Cite

Oyun Teorisi ve Nash’in Denge Stratejisi

Year 2018, Issue: 14, 419 - 440, 01.04.2018

Abstract

Oyun teorisi Augustin Cournot ile birlikte adı konulmamış biçimde iktisat bilimine girmiş ve iktisatçılara tamamen farklı bir bakış açısı sağlamıştır. İzleyen yüzyıl boyunca oligopol rekabet biçimini açıklamaya çalışan iktisatçılar tarafından sürekli geliştirilmiştir. 1940’lı ve 1950’li yıllar oyun teorisinin yoğun olarak tartışıldığı yıllarıdır. Bu dönemde oyun teorisi iktisatçıların, matematikçilerin hatta psikologların katkılarıyla daha tutarlı bir sistematiğe oturtulmuş ve iktisat teorisinin vazgeçilmez parçası haline gelmiştir. Bu katkıları yapan önemli isimlerden biri de oyun teorisinin yanı sıra diferansiyel geometride kısmi diferansiyel denklemlerin incelenmesine de önemli katkılarda bulunmuş bir matematikçi olan John F. Nash Jr’dir. Kimi araştırmacılara göre Nash'in işbirliksiz oyunlar kuramı ve “Nash Dengesi” formülünün, iktisada ve sosyal bilimlere yaptığı etkiler, fen bilimlerinde DNA çift sarmalının keşfi ile kıyaslanabilecek kadar önemlidir. Bu çalışmada alan yazın tarama ve derleme yöntemi kullanılarak oyun teorisinin tarihsel gelişimi genel hatlarıyla açıklanmıştır. Bu bağlamda oyun teorisne katkı sağlayan modeller karşılaştırmalı olarak incelenmiştir. Ayrıca Nash’in Denge Stratejisi’nin oyun teorisine katkılarının iktisadi analizdeki önemi ve gerekliliği açıklanmıştır.

References

  • Arrow, K. J. (2003). Introductory remarks on the history of ga- me theory. Games and Economic Behavior, 45(1), 15-18.
  • Axelrod, R.& D'Ambrosio, L. (1994). Annotated bibliography on the evolution of cooperation, Retrieved from http://www- perso- nal.umich.edu/~axe/research/Evol_of_Coop_Bibliography.ht m on 29.11.2017.
  • Basılgan, M. (2013). İktisat ve deneysel yöntem: deneyler, tar- tışmalar ve gelecek, İ.Ü. Siyasal Bilgiler Fakültesi Dergisi, 48, 61
  • Baumol, W. J. & Goldfeld, S. M. (Eds.). (1968). Precursors in mat- hematical economics: An anthology (No. 19). London School of
  • Economics and Political Science. Dimand, M. A. & Dimand, R. W. (2002). The history of game the- ory, volume 1: from the beginnings to 1945. Routledge.
  • Gächter, S. (2004). Behavioral game theory. Blackwell handbook of judgment and decision making, 485-503.
  • Giocoli, N. (2003a). Conjecturizing Cournot: The conjectural variations approach to duopoly theory. History of political eco- nomy, 35(2), 175-204.
  • Giocoli, N. (2003b). Fixing the point: the contribution of early game theory to the tool-box of modern economics. Journal of
  • Economic Methodology, 10(1), 1-39. Giocoli, N. (2004). Nash equilibrium. History of political eco- nomy, 36(4), 639-666.
  • Hyksová, M. (2013). Several milestones in the history of game theory, doi=10.1.1.319.8082 John https://www.nobelprize.org/nobel_prizes/economic- sciences/laureates/1994/nash-bio.html on 20.11.2017 from
  • Kagel, J. H. & Roth, A. E. (Eds.). (2016). The Handbook of Experi- mental Economics, Volume 2: The Handbook of Experimental Econo- mics. Princeton university press.
  • Kuhn, S. (1997). Prisoner's dilemma, Retrieved from https://seop.illc.uva.nl/entries/prisoner-dilemma/ 11.2017. on
  • Leonard, R. J. (1994). Reading Cournot, reading Nash: the crea- tion and stabilisation of the Nash equilibrium, Economic Journal, , 492-511.
  • Leonard, R. (2010). Von Neumann, Morgenstern, and the creation of game theory: from chess to social scince 1900-1960, Cambridge,
  • Cambridge University Press. McCain, R. A. (2010). Game theory: a nontechnical introduction to the analysis of strategy revised, World Scientific Publishing Com- pany.
  • Myerson, R. B. (1999). Nash equilibrium and the history of eco- nomic theory. Journal of Economic Literature, 37(3), 1067-1082.
  • Nash, J. F. (1950a). The bargaining problem. Econometrica: Jour- nal of the Econometric Society, 155-162.
  • Nash, J. F. (1950b). Equilibrium points in n-person ga- mes. Proceedings of the national academy of sciences, 36(1), 48-49.
  • Nash, J. F. (1951). Non-cooperative games. Annals of mathema- tics, 286-295.
  • Rives, N. W. (1975). On the history of the mathematical theory of games. History of Political Economy, 7(4), 549-565.
  • Sandmo, A. (2011). Economics evolving: A history of economic tho- ught. Princeton University Press.
  • Schwalbe, U. & Walker, P. (2001). Zermelo and the early history of game theory. Games and economic behavior, 34(1), 123-137.
  • Şahin, S. & Eren, E. (2012). Oyun teorisinin gelişimi ve günü- müz iktisat paradigmasının oluşumuna etkileri. Hukuk ve İktisat Araştırmaları Dergisi, 4(1), 265-274
  • Varian, Hal R. (2002). Economic scene; you've seen the movie. now just exactly what was it that John Nash had on his beautiful mind? Retrieved http://www.nytimes.com/2002/04/11/business/economic- scene-you-ve-seen-movie-now-just-exactly-what-was-it-that- john-nash-had.html on 29.11.2017.
  • Walker, P. (2012). A chronology of game theory. University of Canterbury, New Zealand website, entry posted September.

The Game Theory And Nash’s Equilibrium Strategy

Year 2018, Issue: 14, 419 - 440, 01.04.2018

Abstract

The game theory entered into the economics in a way that its name wasn’t given, and it provided the definite different viewpoint for the economists. It was constantly developed by the economists who tried to explain the oligopoly competition way for the next generation. The years of 1940’s and 1950’s are the years that the game theory was densely discussed. The game theory was put into more consistent systematics with the contributions of economists, mathematicians and even the psychologicists and it became an inevitable part of economics theory. One of the important people who contributed to it is John F. Nash Jr who is a mathematician who contributed substantially to the review of game theory and the partly differential equations in the differential geometry. According to some of the researchers, the impacts of Nash’s game theory without collaboration and “Nash Equilibrium” formulas on the economics and social sicences are as important as comparing with the discovery of DNA double stranded in the sciences. In this study, historical development process of game theory is explained in general terms by using literature review and compilation methods. In this context, models contributing the game theory are comparatively investigated. Besides, importance and essentialness of contributions of Nash Equilibrium Strategy to the game theory in economic analysis is emphasized.

References

  • Arrow, K. J. (2003). Introductory remarks on the history of ga- me theory. Games and Economic Behavior, 45(1), 15-18.
  • Axelrod, R.& D'Ambrosio, L. (1994). Annotated bibliography on the evolution of cooperation, Retrieved from http://www- perso- nal.umich.edu/~axe/research/Evol_of_Coop_Bibliography.ht m on 29.11.2017.
  • Basılgan, M. (2013). İktisat ve deneysel yöntem: deneyler, tar- tışmalar ve gelecek, İ.Ü. Siyasal Bilgiler Fakültesi Dergisi, 48, 61
  • Baumol, W. J. & Goldfeld, S. M. (Eds.). (1968). Precursors in mat- hematical economics: An anthology (No. 19). London School of
  • Economics and Political Science. Dimand, M. A. & Dimand, R. W. (2002). The history of game the- ory, volume 1: from the beginnings to 1945. Routledge.
  • Gächter, S. (2004). Behavioral game theory. Blackwell handbook of judgment and decision making, 485-503.
  • Giocoli, N. (2003a). Conjecturizing Cournot: The conjectural variations approach to duopoly theory. History of political eco- nomy, 35(2), 175-204.
  • Giocoli, N. (2003b). Fixing the point: the contribution of early game theory to the tool-box of modern economics. Journal of
  • Economic Methodology, 10(1), 1-39. Giocoli, N. (2004). Nash equilibrium. History of political eco- nomy, 36(4), 639-666.
  • Hyksová, M. (2013). Several milestones in the history of game theory, doi=10.1.1.319.8082 John https://www.nobelprize.org/nobel_prizes/economic- sciences/laureates/1994/nash-bio.html on 20.11.2017 from
  • Kagel, J. H. & Roth, A. E. (Eds.). (2016). The Handbook of Experi- mental Economics, Volume 2: The Handbook of Experimental Econo- mics. Princeton university press.
  • Kuhn, S. (1997). Prisoner's dilemma, Retrieved from https://seop.illc.uva.nl/entries/prisoner-dilemma/ 11.2017. on
  • Leonard, R. J. (1994). Reading Cournot, reading Nash: the crea- tion and stabilisation of the Nash equilibrium, Economic Journal, , 492-511.
  • Leonard, R. (2010). Von Neumann, Morgenstern, and the creation of game theory: from chess to social scince 1900-1960, Cambridge,
  • Cambridge University Press. McCain, R. A. (2010). Game theory: a nontechnical introduction to the analysis of strategy revised, World Scientific Publishing Com- pany.
  • Myerson, R. B. (1999). Nash equilibrium and the history of eco- nomic theory. Journal of Economic Literature, 37(3), 1067-1082.
  • Nash, J. F. (1950a). The bargaining problem. Econometrica: Jour- nal of the Econometric Society, 155-162.
  • Nash, J. F. (1950b). Equilibrium points in n-person ga- mes. Proceedings of the national academy of sciences, 36(1), 48-49.
  • Nash, J. F. (1951). Non-cooperative games. Annals of mathema- tics, 286-295.
  • Rives, N. W. (1975). On the history of the mathematical theory of games. History of Political Economy, 7(4), 549-565.
  • Sandmo, A. (2011). Economics evolving: A history of economic tho- ught. Princeton University Press.
  • Schwalbe, U. & Walker, P. (2001). Zermelo and the early history of game theory. Games and economic behavior, 34(1), 123-137.
  • Şahin, S. & Eren, E. (2012). Oyun teorisinin gelişimi ve günü- müz iktisat paradigmasının oluşumuna etkileri. Hukuk ve İktisat Araştırmaları Dergisi, 4(1), 265-274
  • Varian, Hal R. (2002). Economic scene; you've seen the movie. now just exactly what was it that John Nash had on his beautiful mind? Retrieved http://www.nytimes.com/2002/04/11/business/economic- scene-you-ve-seen-movie-now-just-exactly-what-was-it-that- john-nash-had.html on 29.11.2017.
  • Walker, P. (2012). A chronology of game theory. University of Canterbury, New Zealand website, entry posted September.
There are 25 citations in total.

Details

Primary Language Turkish
Journal Section Research Article
Authors

Sema Yılmaz Genç This is me

Hamza Kadah This is me

Publication Date April 1, 2018
Published in Issue Year 2018 Issue: 14

Cite

APA Genç, S. Y., & Kadah, H. (2018). Oyun Teorisi ve Nash’in Denge Stratejisi. Iğdır Üniversitesi Sosyal Bilimler Dergisi(14), 419-440.