Research Article
BibTex RIS Cite

Farklılaştırılmış Bilgisayar Destekli Matematik Etkinliklerinin Üstün Yetenekli Öğrencilerin Bilgi-İşlemsel Düşünme ve Matematiğe Yönelik Tutumlarına Etkisi

Year 2023, Issue: 34, 520 - 541, 27.10.2023
https://doi.org/10.54600/igdirsosbilder.1315071

Abstract

Bu çalışmanın temel amacı, üstün yetenekli öğrencilere yönelik geliştirilen bilgisayar destekli matematik etkinliklerinin, bilgi-işlemsel düşünme becerilerine (yaratıcılık, algoritmik düşünme, işbirliklilik, eleştirel düşünme, problem çözme alt boyutlarıyla birlikte) ve matematiğe yönelik tutuma (ilgi, kaygı, çalışma, gereklilik gibi alt boyutlarıyla birlikte) etkisini araştırmaktır. “Ön test, son test deney-kontrol gruplu deneysel desen” kullanılmıştır. Araştırmanın örneklemini 22 üstün yetenekli öğrenci oluşturmaktadır. Bu öğrencilerden 11'i deney grubunda, diğer 11 öğrenci ise kontrol grubunda yer almaktadır. Veri toplama aracı olarak bilgi-işlemsel düşünme ve matematiğe yönelik tutum ölçeği kullanılmıştır. Nicel veriler analiz etmek için Mann-Whitney U testi ve Wilcoxon-Z testi kullanılmıştır. Deney ve kontrol grubunun bilgi-işlemsel düşünme becerilerinin yaratıcılık ve algoritmik düşünme boyutlarında anlamlı düzeyde farklılaştığı görülmüştür. Matematiğe yönelik tutumun alt boyutlarından çalışma ve gereksinim açısından anlamlı farklılık bulunmuştur. Bilgisayar tabanlı matematiksel etkinlikler, hesaplamalı düşünmenin yaratıcılık ve algoritmik düşünme boyutlarını olumlu yönde etkilemiştir. Bu etkinlikler matematiğe yönelik tutumun kaygı ve çalışma boyutlarını geliştirmiştir. Çalışmanın sonuçlarına göre bu etkinliklerin daha fazla geliştirilmesi ve yaygınlaştırılması gerektiği söylenebilir.

Supporting Institution

Yok

Project Number

Yok

Thanks

Yok

References

  • Abidin, Z., Herman, T., Jupri, A., & Farokhah, L. (2021). Gifted Children’s Mathematical Reasoning Abilities on Problem-Based Learning and Project-Based Learning Literacy. In Journal of Physics: Conference Series (Vol. 1720, No. 1, p. 012018). IOP Publishing.
  • Alessi, S. M., & Trollip, S. R. (2001). Multimedia for Learning. Massachutes:: Allyn and Bacon.
  • Alhusaini, A. (2018). Using the TASC model to develop gifted students’ creativity: Analytical review. Journal for the Education of Gifted Young Scientists, 6(3), 11-29.
  • Assouline, S. G., & Lupkowski-Shoplik, A. (2021). Developing math talent: A comprehensive guide to math education for gifted students in elementary and middle school. Routledge.
  • Bajracharya, J. R. (2019). Instructional design and models: ASSURE and Kemp. Journal of Education and Research, 9(2), 1-9.
  • Beyer, B. K. (2001). Infusing thinking in history and the social sciences. Alexandria, VA.
  • Binet, A. (1904). Spearman The proof and measurement of association between two things; General intelligence objectively determined and measured. L'année psychologique, 11(1), 623-624.
  • Bildiren, A., Sağkal, A. S., Gür, G., & Özdemir, Y. (2020). The perceptions of the preschool teachers regarding identification and education of gifted children. Ozel Egitim Dergisi, 21(2), 351-356.
  • Borland, J. H. (Ed.). (2003). Rethinking gifted education (Vol. 10). Teachers College Press.
  • Bundy, A. (2007). Computational thinking is pervasive. Journal of Scientific and Practical Computing, 1(2), 67-69.
  • Caine, R. N., & Caine, G. (1997). Education on the edge of possibility. Association for Supervision and Curriculum Development, 1250 N. Pitt Street, Alexandria, VA 22314-1453.
  • Ceylan, Ö. (2022). The effect of the waste management themed summer program on gifted students’ environmental attitude, creative thinking skills and critical thinking dispositions. Journal of Adventure Education and Outdoor Learning, 22(1), 53-65.
  • Chevalier, M., Giang, C., Piatti, A., & Mondada, F. (2020). Fostering computational thinking through educational robotics: a model for creative computational problem solving. International Journal of STEM Education, 7(1), 1-18.
  • Colangelo, N., & Davis, G. A. (2002). Handbook on gifted education. Allyn & Bacon, 75 Arlington St., Suite 300, Boston, MA 02116.
  • Conklin, W., & Frei, S. (2007). Differentiating the curriculum for gifted learners: All grades. Teacher Created Materials.
  • Davis, J. L. (2021). Reframing professional learning to meet the needs of teachers working with culturally diverse gifted learners. In Best practices in professional learning and teacher preparation (pp. 51-69). Routledge.
  • Denning, P. J., & Tedre, M. (2022). Computational thinking: A disciplinary perspective. Informatics in Education, 20(3), 361-390.
  • Dering Ã, Y., & Davaslıgil, Ã. (2020). The effect of differentiated mathematics programs on the mathematics attitude of gifted children. MOJES: Malaysian Online Journal of Educational Sciences, 8(1), 27-37.
  • Diezman, C. M. and Watters, J.J. 2000. Identifying and supporting spatial intelligence in young children. Contemporary Issues in Early Childhood, 1(3), 299-313.
  • Ford, D. Y., & Scott, M. T. (2021). Culturally responsive response to intervention: Meeting the needs of students who are gifted and culturally different. In Implementing RtI With Gifted Students (pp. 209-227). Routledge. Gagné, F. (1985). Giftedness and talent: Reexamining a reexamination of the definitions. Gifted child quarterly, 29(3), 103-112.
  • Galton, F. (2019). 3 Early History of Theory and Research on Intelligence. Human Intelligence: An Introduction, 47.
  • Gardner, H. (1993). Multiple intelligences: The theory in practice. Basic books.
  • Gardner, H. (2010). Multiple intelligences. New York.-1993.
  • Gavin, M. K. (2021). Mathematics curriculum for gifted learners. In Introduction to curriculum design in gifted education (pp. 151-174). Routledge.
  • Guilford, J. P. (1950). Creativity, in «American Psychologist», 5. Citado en Dinámicas entre creación y procesos terapéuticos (2006)(coord. Coll). Murcia: Valle de Ricote. Universidad de Murcia.
  • Guilford, J. P., & Hoepfner, R. (1966). Creative potential as related to measures of IQ and verbal comprehension. Indian Journal of Psychology, 41(1), 7-16.
  • Hong, H. Y., & Lee, Y. H. (2023). Computer‐supported knowledge building to enhance reading motivation and comprehension. British Journal of Educational Technology, 54(1), 375-393.
  • Huitt, W. (1998). Critical thinking: An overview. Educational psychology interactive, 3(6), 34-50.
  • ISTE. (2015). CT Leadership toolkit. Nisan 20, 2017 tarihinde http://www.iste.org/docs/ct-documents/ct-leadershipt-toolkit.pdf?sfvrsn=4 adresinden alındı
  • Kamarudin, M. F., Sharif, M. S. A. M., & Kamarulzaman, M. H. (2022). Differentiated Instruction: Exploring the Attitudes of Gifted and Talented Students in Mathematics. Asian Journal of Research in Education and Social Sciences, 4(1), 146-160.
  • Kaplan, S. N. (1994). Differentiating the core curriculum and instruction to provide advanced learning opportunities. Sacramento: California Department of Education.
  • Karabey, B. (2010). Determining the level of creative problem solving skills and critical thinking skills of gifted students at primary schools. Unpublished Doctoral Dissertation), Dokuz Eylul University, Institute of Educational Sciences, İzmir, Turkey. Retrieved from https://tez. yok. gov. tr/UlusalTezMerkezi/giris. jsp (Thesis Number 265507).
  • Kettler, T., & Hebda, M. R. (2022). Transforming potential into exceptional achievement: Curriculum design in gifted education. In Introduction to gifted education (pp. 133-149). Routledge.
  • Kim, H., Cho*, S., & Ahn, D. (2004). Development of mathematical creative problem solving ability test for identification of the gifted in math. Gifted Education International, 18(2), 164-174.
  • Kirçali, A. Ç., & Özdener, N. (2022). A comparison of plugged and unplugged tools in teaching algorithms at the K-12 level for Computational Thinking skills. Technology, Knowledge and Learning, 1-29.
  • Korkmaz, Ö., Çakir, R., & Özden, M. Y. (2017). A validity and reliability study of the computational thinking scales (CTS). Computers in human behavior, 72, 558-569.
  • Korkmaz, Ö., Çakır, R., Özden, M. Y., Ali, O., & Sarıoğlu, S. (2015). Bireylerin bilgisayarca Thinking becerilerinin farklı değişkenler açısından incelenmesi. Ondokuz Mayis University Journal of Education Faculty, 34(2), 68-87.
  • Leaño, A. J. (2022). Curriculum Implementation, Teachers’ Competencies and Preferred Teaching Approaches for Kindergarten Gifted Education Program: An Assessment. Jurnal Pendidikan Awal Kanak-kanak Kebangsaan, 11, 42-63.
  • Lee, S. Y., Olszewski-Kubilius, P., Makel, M. C., & Putallaz, M. (2015). Gifted students’ perceptions of an accelerated summer program and social support. Gifted Child Quarterly, 59(4), 265-282.
  • McCoach, D. B., & Siegle, D. (2003). The structure and function of academic self concept in gifted and general education students. Roeper Review, 25, 61-65.
  • Önal, N. (2013). Ortaokul öğrencilerinin matematik tutumlarına yönelik ölçek geliştirme çalışması, İlköğretim Online, 12 (4), 938-948. Learning Environments Research, 18, 143-161.
  • Özyaprak, M. (2012). Üstün zekâlı olan ve olmayan öğrencilerin görsel-uzamsal yeteneklerinin düzeylerinin karşılaştırılması. Türk Üstün Zekâ ve Eğitim Dergisi, 2(2), 137-153.
  • Patrick, J. J. (1986). Critical thinking in the social studies. ERIC Clearinghouse for Social Studies, Social Science Education, Indiana University.
  • Pepkin, K. L. (2004). Creative problem solving in math. Dalam N. Sriwati, G. Suhandana, dan N. Atmadja, e-Journal Program Pasca Sarjana Univ. Pendidikan Ganesha Prodi AP, 4.
  • Peterson, J. S. (2021). Differentiating counseling approaches for gifted children and teens: Needs and strategies. In Handbook for counselors serving students with gifts & talents (pp. 813-833). Routledge.
  • Piaget, J., & Cook, M. (1952). The origins of intelligence in children (Vol. 8, No. 5, pp. 18-1952). New York: International Universities Press.
  • Porter, L. (2020). Gifted young children: A guide for teachers and parents. Routledge.
  • Poulos, A., & Mamona-Downs, J. (2018). Gifted students approaches when solving challenging mathematical problems. In Mathematical creativity and mathematical giftedness (pp. 309-341). Springer, Cham.
  • Roberts, J. L., Inman, T. F., & Robins, J. H. (Eds.). (2022). Introduction to gifted education. Taylor & Francis. Samuels, C. A. (2005). N.C. program holds promise for gifted classes. Education Week, 24(40), 5-10.
  • Sen, C., Ay, Z. S., & Kiray, S. A. (2021). Computational thinking skills of gifted and talented students in integrated STEM activities based on the engineering design process: The case of robotics and 3D robot modeling. Thinking Skills and Creativity, 42, 100931.
  • Siegle, D., DaVia Rubenstein, L., & McCoach, D. B. (2020). Do you know what I'm thinking? A comparison of teacher and parent perspectives of underachieving gifted students' attitudes. Psychology in the Schools, 57(10), 1596-1614.
  • Spearman, C. (2010). The proof and measurement of association between two things. International journal of epidemiology, 39(5), 1137-1150.
  • Sternberg, R. J. (1997). The concept of intelligence and its role in lifelong learning and success. American psychologist, 52(10), 1030.
  • Sternberg, R. J., & Lubart, T. I. (1999). The concept of creativity: Prospects and paradigms. Handbook of creativity, 1(3-15).
  • Stuart, T., & Beste, A. (2011). Farklı olduğumu biliyordum: Ustun yeteneklileri anlayabilmek [I knew I was different: To understand the gifted]. 3 Baskı. Trans. Gönenli A.), Ankara: Kök Yayıncılık.
  • Tambunan, H. (2019). The Effectiveness of the Problem Solving Strategy and the Scientific Approach to Students' Mathematical Capabilities in High Order Thinking Skills. International Electronic Journal of Mathematics Education, 14(2), 293-302.
  • Tang, X., Yin, Y., Lin, Q., Hadad, R., & Zhai, X. (2020). Assessing computational thinking: A systematic review of empirical studies. Computers & Education, 148, 103798.
  • Thorndike, E. L. (1898). Animal intelligence: An experimental study of the associative processes in animals. The Psychological Review: Monograph Supplements, 2(4), i.
  • Thurstone, L. L. (1946). Theories of intelligence. The scientific monthly, 62(2), 101-112.
  • Trouche, L., Gueudet, G., & Pepin, B. (Eds.). (2019). The'resource'approach to Mathematics Education. Springer Nature.
  • Van de Walle, J. A., Karp, K. S., & Bay-Williams, J. M. (2016). Elementary and middle school mathematics. Pearson Education UK.
  • Van Tassel-Baska, J., & Stambaugh, T. (2008). Curriculum and instructional considerations in programs for the gifted. In Handbook of giftedness in children. Springer, Boston, MA.
  • Wechsler, D. (1940). The measurement of adult intelligence. The Journal of Nervous and Mental Disease, 91(4), 548.
  • Wing, J. M. (2008). Computational thinking and thinking about computing. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 366(1881), 3717-3725.

The Effects of Differentiated Computer-Based Mathematical Activities on Gifted Students’ Computational Thinking and Attitudes Toward Mathematics

Year 2023, Issue: 34, 520 - 541, 27.10.2023
https://doi.org/10.54600/igdirsosbilder.1315071

Abstract

The present study aims to investigate the effects of differentiated computer-based mathematical activities on computational thinking and attitude toward mathematics. "Pre-test, post-test experimental-control group design" was used. The sample of the study consists of 22 gifted students. Eleven students are in the experimental group; the other is in the control group. The computational thinking and attitude toward mathematics scale have been used as data collection tools. Mann-Whitney U test and Wilcoxon-Z test were used to analyze quantitative data. It was seen that the experimental and control group's computational thinking skills differed significantly in creativity and algorithmic thinking dimensions. There is a significant difference in attitude toward mathematics regarding study and requirements. Computer-based mathematical activities have positively affected the creativity and algorithmic thinking dimensions of computational thinking. These activities have improved the anxiety and study dimensions of the attitude toward mathematics. These activities should be developed more and disseminated.

Project Number

Yok

References

  • Abidin, Z., Herman, T., Jupri, A., & Farokhah, L. (2021). Gifted Children’s Mathematical Reasoning Abilities on Problem-Based Learning and Project-Based Learning Literacy. In Journal of Physics: Conference Series (Vol. 1720, No. 1, p. 012018). IOP Publishing.
  • Alessi, S. M., & Trollip, S. R. (2001). Multimedia for Learning. Massachutes:: Allyn and Bacon.
  • Alhusaini, A. (2018). Using the TASC model to develop gifted students’ creativity: Analytical review. Journal for the Education of Gifted Young Scientists, 6(3), 11-29.
  • Assouline, S. G., & Lupkowski-Shoplik, A. (2021). Developing math talent: A comprehensive guide to math education for gifted students in elementary and middle school. Routledge.
  • Bajracharya, J. R. (2019). Instructional design and models: ASSURE and Kemp. Journal of Education and Research, 9(2), 1-9.
  • Beyer, B. K. (2001). Infusing thinking in history and the social sciences. Alexandria, VA.
  • Binet, A. (1904). Spearman The proof and measurement of association between two things; General intelligence objectively determined and measured. L'année psychologique, 11(1), 623-624.
  • Bildiren, A., Sağkal, A. S., Gür, G., & Özdemir, Y. (2020). The perceptions of the preschool teachers regarding identification and education of gifted children. Ozel Egitim Dergisi, 21(2), 351-356.
  • Borland, J. H. (Ed.). (2003). Rethinking gifted education (Vol. 10). Teachers College Press.
  • Bundy, A. (2007). Computational thinking is pervasive. Journal of Scientific and Practical Computing, 1(2), 67-69.
  • Caine, R. N., & Caine, G. (1997). Education on the edge of possibility. Association for Supervision and Curriculum Development, 1250 N. Pitt Street, Alexandria, VA 22314-1453.
  • Ceylan, Ö. (2022). The effect of the waste management themed summer program on gifted students’ environmental attitude, creative thinking skills and critical thinking dispositions. Journal of Adventure Education and Outdoor Learning, 22(1), 53-65.
  • Chevalier, M., Giang, C., Piatti, A., & Mondada, F. (2020). Fostering computational thinking through educational robotics: a model for creative computational problem solving. International Journal of STEM Education, 7(1), 1-18.
  • Colangelo, N., & Davis, G. A. (2002). Handbook on gifted education. Allyn & Bacon, 75 Arlington St., Suite 300, Boston, MA 02116.
  • Conklin, W., & Frei, S. (2007). Differentiating the curriculum for gifted learners: All grades. Teacher Created Materials.
  • Davis, J. L. (2021). Reframing professional learning to meet the needs of teachers working with culturally diverse gifted learners. In Best practices in professional learning and teacher preparation (pp. 51-69). Routledge.
  • Denning, P. J., & Tedre, M. (2022). Computational thinking: A disciplinary perspective. Informatics in Education, 20(3), 361-390.
  • Dering Ã, Y., & Davaslıgil, Ã. (2020). The effect of differentiated mathematics programs on the mathematics attitude of gifted children. MOJES: Malaysian Online Journal of Educational Sciences, 8(1), 27-37.
  • Diezman, C. M. and Watters, J.J. 2000. Identifying and supporting spatial intelligence in young children. Contemporary Issues in Early Childhood, 1(3), 299-313.
  • Ford, D. Y., & Scott, M. T. (2021). Culturally responsive response to intervention: Meeting the needs of students who are gifted and culturally different. In Implementing RtI With Gifted Students (pp. 209-227). Routledge. Gagné, F. (1985). Giftedness and talent: Reexamining a reexamination of the definitions. Gifted child quarterly, 29(3), 103-112.
  • Galton, F. (2019). 3 Early History of Theory and Research on Intelligence. Human Intelligence: An Introduction, 47.
  • Gardner, H. (1993). Multiple intelligences: The theory in practice. Basic books.
  • Gardner, H. (2010). Multiple intelligences. New York.-1993.
  • Gavin, M. K. (2021). Mathematics curriculum for gifted learners. In Introduction to curriculum design in gifted education (pp. 151-174). Routledge.
  • Guilford, J. P. (1950). Creativity, in «American Psychologist», 5. Citado en Dinámicas entre creación y procesos terapéuticos (2006)(coord. Coll). Murcia: Valle de Ricote. Universidad de Murcia.
  • Guilford, J. P., & Hoepfner, R. (1966). Creative potential as related to measures of IQ and verbal comprehension. Indian Journal of Psychology, 41(1), 7-16.
  • Hong, H. Y., & Lee, Y. H. (2023). Computer‐supported knowledge building to enhance reading motivation and comprehension. British Journal of Educational Technology, 54(1), 375-393.
  • Huitt, W. (1998). Critical thinking: An overview. Educational psychology interactive, 3(6), 34-50.
  • ISTE. (2015). CT Leadership toolkit. Nisan 20, 2017 tarihinde http://www.iste.org/docs/ct-documents/ct-leadershipt-toolkit.pdf?sfvrsn=4 adresinden alındı
  • Kamarudin, M. F., Sharif, M. S. A. M., & Kamarulzaman, M. H. (2022). Differentiated Instruction: Exploring the Attitudes of Gifted and Talented Students in Mathematics. Asian Journal of Research in Education and Social Sciences, 4(1), 146-160.
  • Kaplan, S. N. (1994). Differentiating the core curriculum and instruction to provide advanced learning opportunities. Sacramento: California Department of Education.
  • Karabey, B. (2010). Determining the level of creative problem solving skills and critical thinking skills of gifted students at primary schools. Unpublished Doctoral Dissertation), Dokuz Eylul University, Institute of Educational Sciences, İzmir, Turkey. Retrieved from https://tez. yok. gov. tr/UlusalTezMerkezi/giris. jsp (Thesis Number 265507).
  • Kettler, T., & Hebda, M. R. (2022). Transforming potential into exceptional achievement: Curriculum design in gifted education. In Introduction to gifted education (pp. 133-149). Routledge.
  • Kim, H., Cho*, S., & Ahn, D. (2004). Development of mathematical creative problem solving ability test for identification of the gifted in math. Gifted Education International, 18(2), 164-174.
  • Kirçali, A. Ç., & Özdener, N. (2022). A comparison of plugged and unplugged tools in teaching algorithms at the K-12 level for Computational Thinking skills. Technology, Knowledge and Learning, 1-29.
  • Korkmaz, Ö., Çakir, R., & Özden, M. Y. (2017). A validity and reliability study of the computational thinking scales (CTS). Computers in human behavior, 72, 558-569.
  • Korkmaz, Ö., Çakır, R., Özden, M. Y., Ali, O., & Sarıoğlu, S. (2015). Bireylerin bilgisayarca Thinking becerilerinin farklı değişkenler açısından incelenmesi. Ondokuz Mayis University Journal of Education Faculty, 34(2), 68-87.
  • Leaño, A. J. (2022). Curriculum Implementation, Teachers’ Competencies and Preferred Teaching Approaches for Kindergarten Gifted Education Program: An Assessment. Jurnal Pendidikan Awal Kanak-kanak Kebangsaan, 11, 42-63.
  • Lee, S. Y., Olszewski-Kubilius, P., Makel, M. C., & Putallaz, M. (2015). Gifted students’ perceptions of an accelerated summer program and social support. Gifted Child Quarterly, 59(4), 265-282.
  • McCoach, D. B., & Siegle, D. (2003). The structure and function of academic self concept in gifted and general education students. Roeper Review, 25, 61-65.
  • Önal, N. (2013). Ortaokul öğrencilerinin matematik tutumlarına yönelik ölçek geliştirme çalışması, İlköğretim Online, 12 (4), 938-948. Learning Environments Research, 18, 143-161.
  • Özyaprak, M. (2012). Üstün zekâlı olan ve olmayan öğrencilerin görsel-uzamsal yeteneklerinin düzeylerinin karşılaştırılması. Türk Üstün Zekâ ve Eğitim Dergisi, 2(2), 137-153.
  • Patrick, J. J. (1986). Critical thinking in the social studies. ERIC Clearinghouse for Social Studies, Social Science Education, Indiana University.
  • Pepkin, K. L. (2004). Creative problem solving in math. Dalam N. Sriwati, G. Suhandana, dan N. Atmadja, e-Journal Program Pasca Sarjana Univ. Pendidikan Ganesha Prodi AP, 4.
  • Peterson, J. S. (2021). Differentiating counseling approaches for gifted children and teens: Needs and strategies. In Handbook for counselors serving students with gifts & talents (pp. 813-833). Routledge.
  • Piaget, J., & Cook, M. (1952). The origins of intelligence in children (Vol. 8, No. 5, pp. 18-1952). New York: International Universities Press.
  • Porter, L. (2020). Gifted young children: A guide for teachers and parents. Routledge.
  • Poulos, A., & Mamona-Downs, J. (2018). Gifted students approaches when solving challenging mathematical problems. In Mathematical creativity and mathematical giftedness (pp. 309-341). Springer, Cham.
  • Roberts, J. L., Inman, T. F., & Robins, J. H. (Eds.). (2022). Introduction to gifted education. Taylor & Francis. Samuels, C. A. (2005). N.C. program holds promise for gifted classes. Education Week, 24(40), 5-10.
  • Sen, C., Ay, Z. S., & Kiray, S. A. (2021). Computational thinking skills of gifted and talented students in integrated STEM activities based on the engineering design process: The case of robotics and 3D robot modeling. Thinking Skills and Creativity, 42, 100931.
  • Siegle, D., DaVia Rubenstein, L., & McCoach, D. B. (2020). Do you know what I'm thinking? A comparison of teacher and parent perspectives of underachieving gifted students' attitudes. Psychology in the Schools, 57(10), 1596-1614.
  • Spearman, C. (2010). The proof and measurement of association between two things. International journal of epidemiology, 39(5), 1137-1150.
  • Sternberg, R. J. (1997). The concept of intelligence and its role in lifelong learning and success. American psychologist, 52(10), 1030.
  • Sternberg, R. J., & Lubart, T. I. (1999). The concept of creativity: Prospects and paradigms. Handbook of creativity, 1(3-15).
  • Stuart, T., & Beste, A. (2011). Farklı olduğumu biliyordum: Ustun yeteneklileri anlayabilmek [I knew I was different: To understand the gifted]. 3 Baskı. Trans. Gönenli A.), Ankara: Kök Yayıncılık.
  • Tambunan, H. (2019). The Effectiveness of the Problem Solving Strategy and the Scientific Approach to Students' Mathematical Capabilities in High Order Thinking Skills. International Electronic Journal of Mathematics Education, 14(2), 293-302.
  • Tang, X., Yin, Y., Lin, Q., Hadad, R., & Zhai, X. (2020). Assessing computational thinking: A systematic review of empirical studies. Computers & Education, 148, 103798.
  • Thorndike, E. L. (1898). Animal intelligence: An experimental study of the associative processes in animals. The Psychological Review: Monograph Supplements, 2(4), i.
  • Thurstone, L. L. (1946). Theories of intelligence. The scientific monthly, 62(2), 101-112.
  • Trouche, L., Gueudet, G., & Pepin, B. (Eds.). (2019). The'resource'approach to Mathematics Education. Springer Nature.
  • Van de Walle, J. A., Karp, K. S., & Bay-Williams, J. M. (2016). Elementary and middle school mathematics. Pearson Education UK.
  • Van Tassel-Baska, J., & Stambaugh, T. (2008). Curriculum and instructional considerations in programs for the gifted. In Handbook of giftedness in children. Springer, Boston, MA.
  • Wechsler, D. (1940). The measurement of adult intelligence. The Journal of Nervous and Mental Disease, 91(4), 548.
  • Wing, J. M. (2008). Computational thinking and thinking about computing. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 366(1881), 3717-3725.
There are 64 citations in total.

Details

Primary Language English
Subjects Philosophy of Education
Journal Section Research Article
Authors

Nurullah Taş 0000-0002-8312-8733

Aslan Gülcü 0000-0001-6857-7760

Project Number Yok
Publication Date October 27, 2023
Published in Issue Year 2023 Issue: 34

Cite

APA Taş, N., & Gülcü, A. (2023). The Effects of Differentiated Computer-Based Mathematical Activities on Gifted Students’ Computational Thinking and Attitudes Toward Mathematics. Iğdır Üniversitesi Sosyal Bilimler Dergisi(34), 520-541. https://doi.org/10.54600/igdirsosbilder.1315071