Internal gear pumps are used in a variety of applications for the transfer of many different types of liquids like fuel, oil and food in both the industry and daily life. Power transfer is provided in the applications of those pumps in the transfer sets, especially through the induction motor and the coupling connection. The R & D studies for the efficiency of pumps carried out worldwide account for 6% of the total, and thus energy savings of 303 trillion BTU can be achieved annually. With minimum energy consumption, high rates of energy savings will be ensured by transferring maximum amount of fuel. For this purpose, firstly a detailed literature review was made, and then industrial pump manufacturers and scientific studies were investigated. As a result of that, a new type of internal gear pair design ,which has not been manufactured so far in the industry, has been proposed. In the new pump, the effects of tooth length and the changes in the number of revolutions on flow, power and SEC results were studied. Thus, it will be possible to compare energy expenditure and flow rate with the other pumps developed. By using Response Surface Method (RSM), Taguchi Method and Anova Variance Analysis, optimum speed and tooth length were determined as 700 RPM for speed and 85 mm for tooth length by taking SEC S/N graph into account. In this way, pump production with optimum flow rate and energy consumption amount in the industry was produced, and the energy consumption value was decreased during the fuel transfer from 156,1 Wh/m3 to 92,0 Wh/m3.In addition, the change in the flow rate was found to be the most effective parameter in the 83% rate change. As for the calculation of the Ptotal results, it was determined that a 50% shaft speed and a 45% inner gear were effective.
Internal Gear Pump Specific Energy Consumption (SEC) Taguchi Methods Response Surface Method (RSM) Optizimation Internal Gear Pump, Specific Energy Consumption (SEC), Taguchi Methods, Response Surface Method (RSM), Optizimation
Primary Language | English |
---|---|
Subjects | Mechanical Engineering |
Journal Section | Research Article |
Authors | |
Publication Date | April 30, 2022 |
Submission Date | October 5, 2021 |
Published in Issue | Year 2022 |
Uluslararası 3B Yazıcı Teknolojileri ve Dijital Endüstri Dergisi Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.