Research Article
BibTex RIS Cite

TAGUCHI AND RSM BASED OPTIMIATION OF ENERGY CONSUMPTION ON INTERNAL GEAR PUMPS

Year 2022, , 164 - 175, 30.04.2022
https://doi.org/10.46519/ij3dptdi.1001245

Abstract

Internal gear pumps are used in a variety of applications for the transfer of many different types of liquids like fuel, oil and food in both the industry and daily life. Power transfer is provided in the applications of those pumps in the transfer sets, especially through the induction motor and the coupling connection. The R & D studies for the efficiency of pumps carried out worldwide account for 6% of the total, and thus energy savings of 303 trillion BTU can be achieved annually. With minimum energy consumption, high rates of energy savings will be ensured by transferring maximum amount of fuel. For this purpose, firstly a detailed literature review was made, and then industrial pump manufacturers and scientific studies were investigated. As a result of that, a new type of internal gear pair design ,which has not been manufactured so far in the industry, has been proposed. In the new pump, the effects of tooth length and the changes in the number of revolutions on flow, power and SEC results were studied. Thus, it will be possible to compare energy expenditure and flow rate with the other pumps developed. By using Response Surface Method (RSM), Taguchi Method and Anova Variance Analysis, optimum speed and tooth length were determined as 700 RPM for speed and 85 mm for tooth length by taking SEC S/N graph into account. In this way, pump production with optimum flow rate and energy consumption amount in the industry was produced, and the energy consumption value was decreased during the fuel transfer from 156,1 Wh/m3 to 92,0 Wh/m3.In addition, the change in the flow rate was found to be the most effective parameter in the 83% rate change. As for the calculation of the Ptotal results, it was determined that a 50% shaft speed and a 45% inner gear were effective.

References

  • 1. Öztürk, B., “Experimental Research of Energy Consumption of Austenitizing Heat-Treated Casting Fittings in Pipe Threading”, Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, Vol. 23, Issue 5, Pages 869-878, 2019.
  • 2. Korkuter, B., Ulusoy, A. ve Ri̇zaner, A., “Gezgin Tasarsız Ağ Yönlendirme Protokollerinde Enerji Tüketim Değerlendirilmesi” Sakarya University Journal of Science, Cilt 21, Sayı 4, Sayfa 584-591, 2017.
  • 3. İnternet: ‘’E.I.A Independent Statistics & Analysis: International Energy Outlook’’, http://www.eia.gov/oiaf/ieo/world.html, 2010.
  • 4. Sazak, N., Ertürk, İ. ve Köklükaya, E., “KAA ömür tahmini için basitleştirilmiş bir algılayıcı düğüm enerji tüketimi hesaplama yaklaşımı”, Sakarya University Journal of Science, Cilt 18, Sayı 2, Sayfa 125-130, 2014.
  • 5. Duflou, J., R., Kellens, K. and Dewulf, W., “Unit process impact assessment for discrete part manufacturing: a state of the art”, CIRP J. Manuf. Sci. Technol., Vol. 4, Pages 129-135, 2011. 6. Hanafi, I., Khamlichi, A., Cabrera, F., M., Almansa, E. and Jabbouri, A., “Optimization of cutting conditions for sustainable machining of PEEK-CF30 using TiN tools”, Journal of Cleaner Production, Vol. 33, Pages 1-9, 2012.
  • 7. İnternet: ‘’DOE-ITP, 2004, United States. Department of Energy Industrial Technologies Program. Energy Use, Loss, and Opportunities Analysis, U.S. Manufacturing & Mining. December’’ , http://www.eere.energy.gov/industry/pdfs/energy_opps_analysis.pdf, 2004.
  • 8. Gölcü, M., Pancar, Y. and Sekmen, Y., “Energy saving in a deep well pump with splitter blade”, Energy Conversion and Management, Vol. 47, Issue 5, Pages 638-651, 2006.
  • 9. Zeleny, Z., Vodicka, V., Novotny and V., Mascuch, J., “Gear pump for low power output ORC – an efficiency analysis”, Energy Procedia, Volume 129, Pages 1002-1009, 2017.
  • 10. S., Harumitsu, I., Naoki, S., Yoshiyuki and O., Daisuke, “Development of High Efficiency P/M Internal Gear Pump Rotor (Megafloid Rotor)”, Automotive, Sei Technical Review, Volume 66, Pages 125-128, 2008.
  • 11. Minav, T., Laurila L., Pyrhönen, J and Vtorov, V., “Direct pump control effects on the energy efficiency in an electrohydraulic lifting system”, International Review of Automatic Control, Vol. 4, Issue 2, 2011.
  • 12. Noorpoor, A., “Optimization Gear Oil Pump in Order to Energy Saving and Environmental Impact in a Diesel Engine”, International Journal of Automotive Engineering, Vol. 3, Issue 3, Pages 498-506, 2013.
  • 13. Yoshiharu, I., “Oil temperature influence on friction torque characteristics in hydraulic pumps”, Proc IMechE Part C: J Mechanical Engineering Science, Vol. 226, Issue 9, Pages 2267–2280, 2011.
  • 14. Argun, D., Kantoğlu, B. ve Öztürk, B., “A New Product Design After Benckmarking Analysis Of Helis Gear Pumps And Optimization In Energy Consumption”, Düzce Üniversitesi Bilim ve Teknoloji Dergisi, Vol. 6, Pages 610-617, 2018
  • 15. Çelik H., Uçar, M. ve Cengiz, A., “Yüksek Basınçlı Dişli Pompalarda Gövdenin Parametrik Tasarımı, Gerilme Analizi ve Optimizasyonu,” Mühendis ve Makina, Vol. 576, Issue 49, Pages 15-24, 2007.
  • 16. Öven, A.ve Boğoçlu M.,E., “Dişli Pompalarda Debi Hesaplamaları ve Tasarım Parametreleri,” Mühendis ve Makina, Vol. 660, Issue 56, Pages 34-40, 2014.
  • 17. Çalışkan, H. ve Ç., Ekmekçi, İ. “Pozitif Deplasmanlı Pompalar,” SAU Fen Bilimleri Enstitüsü Dergisi, Vol. 7, Issue 1, Pages 206-212, 2003.
  • 18. Saqib, G., S. and Khan, S., “Performance evaluation of deep well turbine pumps”, Journal of Agricultural Engineering Research, Vol. 56, Issue 2, Pages 165-175, 1993.
  • 19. Frosina, E., Senatore, A., Rigosi, M., “Study of a High-Pressure External Gear Pump with a Computational Fluid Dynamic Modeling Approach”, Energies, Vol. 10, Pages 1113, 2017.
  • 20. Kartal, F. "Taguchi Metodolojisi ile Eriyik Yiğma Modelleme Süreci Parametrelerinin Optimizasyonu". International Journal of 3D Printing Technologies and Digital Industry, Vol.1, Issue 1, Pages 49-56,2017.
  • 21. Özel, S., Vural, E., “Binici, M. "Taguchi method for investigation of the effect of TBC coatings on NiCr bond-coated diesel engine on exhaust gas emissions". International Advanced Researches and Engineering Journal, Vol. 4, Issue 1, Pages 14-20, 2020.
  • 22. İnternet: ‘’Viking Pump, Viking LVP Series Vane Pump Benefits’’, https://www.vikingpump.com/ , 2008.
  • 23. İnternet: ‘’ER 1114 Y Fuel Pump Operation and Maintenance Manual’’, http://www.ipt.com.tr/Home/TR, 2008.
  • 24. Taguchi, G., Chowdhury, S., Wu, Y., “Taguchi's Quality Engineering Handbook”, John Wiley & Sons, Inc., New Jersey, USA, 2005.
  • 25. Debnath, D., Ray, S. and Chakraborty, A.,K., “Development of a statistical model for reliability analysis of hybrid off-grid power system (HOPS)”, Energy Strategy Reviews, Vol. 13, Pages 213-221, 2016.
  • 26. Masmiati, N. and Sarhan, A., A., D., “Optimizing cutting parameters in inclined end milling for minimum surface residual stress – Taguchi approach”, Measurement, Vol. 60, Pages 267–275, 2015.
  • 27. Nas, E. and Öztürk, B., “Optimization of surface roughness via the Taguchi method and investigation of energy consumption when milling spheroidal graphite cast iron materials” Materials Testing, Vol. 60, Pages 519-524, 2018.
  • 28. Günay, M., “AISI 316L Çeliğinin İşlenmesinde Takım Radyüsü Ve Kesme Parametrelerinin Taguchi Yöntemiyle Optimizasyonu”, Journal of the Faculty of Engineering and Architecture of Gazi University, Vol. 28, Issue 3, Pages 437-444, 2013.
  • 29. Yang, Y. K., Chuang, M. T. and Lın, S. S., “Optimization Of Dry Machining Parameters For High-Purity Graphite İn End Milling Process Via Design Of Experiments Methods”, Journal Of Materials Processing Technology, Vol. 209, Pages 4395- 4400, 2009.
  • 30. Kara, F., “Taguchi optimization of surface roughness and flank wear during the turning of DIN 1.2344 tool steel”, Materials Testing, Vol. 59, Pages 903–908, 2017.
  • 31. Zhang, J.Z., Chen, J.C. and Kirby, E.D., “Surface roughness optimization in an end-milling operation using the Taguchi design method, Journal of Materials Processing Technology”, Vol. 184, Pages 233–239, 2007.
  • 32. Gologlu, C. and Sakarya, N., “The effects of cutter path strategies on surface roughness of pocket milling of 1.2738 steel based on Taguchi method”, Journal of Materials Processing Technology, Vol. 206, Pages 7–15, 2008.
  • 33. Sharma, M. and Garg, R., “HIGA: Harmony-inspired genetic algorithm for rack-aware energy-efficient task scheduling in cloud data centers”, Engineering Science and Technology, an International Journal, Volume 23, Issue 1, Pages 211-224, 2020.
  • 34. Öztürk, B. and Uğur, L., Erzincanlı, F., Küçük, Ö., "Optimization of Polyethylene Inserts Design Geometry of Total Knee Prosthesis". International Scientific and Vocational Studies Journal Vol. 2, Pages 31-39, 2018.
  • 35. Kara, F. and Öztürk, B., “Comparison and optimization of PVD and CVD method on surface roughness and flank wear in hard machining of DIN 1.2738 mold steel”, Sensor Review, Vol. 39, Pages 24-33, 2018.
  • 36. Myers, R., H. and Montgomery, D., C., “Response Surface Methodology, Process and Product Optimization Using Designed Experiments”, 2nd ed. John Wiley and Sons, New York, NY, 1995.
  • 37. Myers, R., H., Montgomery, D., C., Vining, G., G., Borror, C., M. and Kowalski, S., M., “Response Surface Methodology: A Retrospective and Literature Survey”, Journal of Quality Technology, Vol. 36, Pages 53-77, 2004.
  • 38. Turallo Gear Pump Catolog, Gear Pumps Technical Information General Information, Use these formulae to determine the nominal pump size for a specific application, Rev B, 2011.
  • 39. Shokoohi, Y., Khosrojerdi, E. and Shiadhi, R., “Machining and ecological effects of a new developed cutting fluid in combination with different cooling techniques on turning operation”, Journal of Clean Production, Vol. 94, Pages 330-339, 2015.
  • 40. Blackmery Global Training and Support Guide, Energy-Eficency in Pumps; How To Measure Energy Efficiency in Pumps, Page 8, 2018.
Year 2022, , 164 - 175, 30.04.2022
https://doi.org/10.46519/ij3dptdi.1001245

Abstract

References

  • 1. Öztürk, B., “Experimental Research of Energy Consumption of Austenitizing Heat-Treated Casting Fittings in Pipe Threading”, Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, Vol. 23, Issue 5, Pages 869-878, 2019.
  • 2. Korkuter, B., Ulusoy, A. ve Ri̇zaner, A., “Gezgin Tasarsız Ağ Yönlendirme Protokollerinde Enerji Tüketim Değerlendirilmesi” Sakarya University Journal of Science, Cilt 21, Sayı 4, Sayfa 584-591, 2017.
  • 3. İnternet: ‘’E.I.A Independent Statistics & Analysis: International Energy Outlook’’, http://www.eia.gov/oiaf/ieo/world.html, 2010.
  • 4. Sazak, N., Ertürk, İ. ve Köklükaya, E., “KAA ömür tahmini için basitleştirilmiş bir algılayıcı düğüm enerji tüketimi hesaplama yaklaşımı”, Sakarya University Journal of Science, Cilt 18, Sayı 2, Sayfa 125-130, 2014.
  • 5. Duflou, J., R., Kellens, K. and Dewulf, W., “Unit process impact assessment for discrete part manufacturing: a state of the art”, CIRP J. Manuf. Sci. Technol., Vol. 4, Pages 129-135, 2011. 6. Hanafi, I., Khamlichi, A., Cabrera, F., M., Almansa, E. and Jabbouri, A., “Optimization of cutting conditions for sustainable machining of PEEK-CF30 using TiN tools”, Journal of Cleaner Production, Vol. 33, Pages 1-9, 2012.
  • 7. İnternet: ‘’DOE-ITP, 2004, United States. Department of Energy Industrial Technologies Program. Energy Use, Loss, and Opportunities Analysis, U.S. Manufacturing & Mining. December’’ , http://www.eere.energy.gov/industry/pdfs/energy_opps_analysis.pdf, 2004.
  • 8. Gölcü, M., Pancar, Y. and Sekmen, Y., “Energy saving in a deep well pump with splitter blade”, Energy Conversion and Management, Vol. 47, Issue 5, Pages 638-651, 2006.
  • 9. Zeleny, Z., Vodicka, V., Novotny and V., Mascuch, J., “Gear pump for low power output ORC – an efficiency analysis”, Energy Procedia, Volume 129, Pages 1002-1009, 2017.
  • 10. S., Harumitsu, I., Naoki, S., Yoshiyuki and O., Daisuke, “Development of High Efficiency P/M Internal Gear Pump Rotor (Megafloid Rotor)”, Automotive, Sei Technical Review, Volume 66, Pages 125-128, 2008.
  • 11. Minav, T., Laurila L., Pyrhönen, J and Vtorov, V., “Direct pump control effects on the energy efficiency in an electrohydraulic lifting system”, International Review of Automatic Control, Vol. 4, Issue 2, 2011.
  • 12. Noorpoor, A., “Optimization Gear Oil Pump in Order to Energy Saving and Environmental Impact in a Diesel Engine”, International Journal of Automotive Engineering, Vol. 3, Issue 3, Pages 498-506, 2013.
  • 13. Yoshiharu, I., “Oil temperature influence on friction torque characteristics in hydraulic pumps”, Proc IMechE Part C: J Mechanical Engineering Science, Vol. 226, Issue 9, Pages 2267–2280, 2011.
  • 14. Argun, D., Kantoğlu, B. ve Öztürk, B., “A New Product Design After Benckmarking Analysis Of Helis Gear Pumps And Optimization In Energy Consumption”, Düzce Üniversitesi Bilim ve Teknoloji Dergisi, Vol. 6, Pages 610-617, 2018
  • 15. Çelik H., Uçar, M. ve Cengiz, A., “Yüksek Basınçlı Dişli Pompalarda Gövdenin Parametrik Tasarımı, Gerilme Analizi ve Optimizasyonu,” Mühendis ve Makina, Vol. 576, Issue 49, Pages 15-24, 2007.
  • 16. Öven, A.ve Boğoçlu M.,E., “Dişli Pompalarda Debi Hesaplamaları ve Tasarım Parametreleri,” Mühendis ve Makina, Vol. 660, Issue 56, Pages 34-40, 2014.
  • 17. Çalışkan, H. ve Ç., Ekmekçi, İ. “Pozitif Deplasmanlı Pompalar,” SAU Fen Bilimleri Enstitüsü Dergisi, Vol. 7, Issue 1, Pages 206-212, 2003.
  • 18. Saqib, G., S. and Khan, S., “Performance evaluation of deep well turbine pumps”, Journal of Agricultural Engineering Research, Vol. 56, Issue 2, Pages 165-175, 1993.
  • 19. Frosina, E., Senatore, A., Rigosi, M., “Study of a High-Pressure External Gear Pump with a Computational Fluid Dynamic Modeling Approach”, Energies, Vol. 10, Pages 1113, 2017.
  • 20. Kartal, F. "Taguchi Metodolojisi ile Eriyik Yiğma Modelleme Süreci Parametrelerinin Optimizasyonu". International Journal of 3D Printing Technologies and Digital Industry, Vol.1, Issue 1, Pages 49-56,2017.
  • 21. Özel, S., Vural, E., “Binici, M. "Taguchi method for investigation of the effect of TBC coatings on NiCr bond-coated diesel engine on exhaust gas emissions". International Advanced Researches and Engineering Journal, Vol. 4, Issue 1, Pages 14-20, 2020.
  • 22. İnternet: ‘’Viking Pump, Viking LVP Series Vane Pump Benefits’’, https://www.vikingpump.com/ , 2008.
  • 23. İnternet: ‘’ER 1114 Y Fuel Pump Operation and Maintenance Manual’’, http://www.ipt.com.tr/Home/TR, 2008.
  • 24. Taguchi, G., Chowdhury, S., Wu, Y., “Taguchi's Quality Engineering Handbook”, John Wiley & Sons, Inc., New Jersey, USA, 2005.
  • 25. Debnath, D., Ray, S. and Chakraborty, A.,K., “Development of a statistical model for reliability analysis of hybrid off-grid power system (HOPS)”, Energy Strategy Reviews, Vol. 13, Pages 213-221, 2016.
  • 26. Masmiati, N. and Sarhan, A., A., D., “Optimizing cutting parameters in inclined end milling for minimum surface residual stress – Taguchi approach”, Measurement, Vol. 60, Pages 267–275, 2015.
  • 27. Nas, E. and Öztürk, B., “Optimization of surface roughness via the Taguchi method and investigation of energy consumption when milling spheroidal graphite cast iron materials” Materials Testing, Vol. 60, Pages 519-524, 2018.
  • 28. Günay, M., “AISI 316L Çeliğinin İşlenmesinde Takım Radyüsü Ve Kesme Parametrelerinin Taguchi Yöntemiyle Optimizasyonu”, Journal of the Faculty of Engineering and Architecture of Gazi University, Vol. 28, Issue 3, Pages 437-444, 2013.
  • 29. Yang, Y. K., Chuang, M. T. and Lın, S. S., “Optimization Of Dry Machining Parameters For High-Purity Graphite İn End Milling Process Via Design Of Experiments Methods”, Journal Of Materials Processing Technology, Vol. 209, Pages 4395- 4400, 2009.
  • 30. Kara, F., “Taguchi optimization of surface roughness and flank wear during the turning of DIN 1.2344 tool steel”, Materials Testing, Vol. 59, Pages 903–908, 2017.
  • 31. Zhang, J.Z., Chen, J.C. and Kirby, E.D., “Surface roughness optimization in an end-milling operation using the Taguchi design method, Journal of Materials Processing Technology”, Vol. 184, Pages 233–239, 2007.
  • 32. Gologlu, C. and Sakarya, N., “The effects of cutter path strategies on surface roughness of pocket milling of 1.2738 steel based on Taguchi method”, Journal of Materials Processing Technology, Vol. 206, Pages 7–15, 2008.
  • 33. Sharma, M. and Garg, R., “HIGA: Harmony-inspired genetic algorithm for rack-aware energy-efficient task scheduling in cloud data centers”, Engineering Science and Technology, an International Journal, Volume 23, Issue 1, Pages 211-224, 2020.
  • 34. Öztürk, B. and Uğur, L., Erzincanlı, F., Küçük, Ö., "Optimization of Polyethylene Inserts Design Geometry of Total Knee Prosthesis". International Scientific and Vocational Studies Journal Vol. 2, Pages 31-39, 2018.
  • 35. Kara, F. and Öztürk, B., “Comparison and optimization of PVD and CVD method on surface roughness and flank wear in hard machining of DIN 1.2738 mold steel”, Sensor Review, Vol. 39, Pages 24-33, 2018.
  • 36. Myers, R., H. and Montgomery, D., C., “Response Surface Methodology, Process and Product Optimization Using Designed Experiments”, 2nd ed. John Wiley and Sons, New York, NY, 1995.
  • 37. Myers, R., H., Montgomery, D., C., Vining, G., G., Borror, C., M. and Kowalski, S., M., “Response Surface Methodology: A Retrospective and Literature Survey”, Journal of Quality Technology, Vol. 36, Pages 53-77, 2004.
  • 38. Turallo Gear Pump Catolog, Gear Pumps Technical Information General Information, Use these formulae to determine the nominal pump size for a specific application, Rev B, 2011.
  • 39. Shokoohi, Y., Khosrojerdi, E. and Shiadhi, R., “Machining and ecological effects of a new developed cutting fluid in combination with different cooling techniques on turning operation”, Journal of Clean Production, Vol. 94, Pages 330-339, 2015.
  • 40. Blackmery Global Training and Support Guide, Energy-Eficency in Pumps; How To Measure Energy Efficiency in Pumps, Page 8, 2018.
There are 39 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Research Article
Authors

Burak Öztürk 0000-0003-1504-1211

Şahin Kaymak This is me 0000-0001-9034-4656

Özkan Küçük 0000-0002-4337-4454

Publication Date April 30, 2022
Submission Date October 5, 2021
Published in Issue Year 2022

Cite

APA Öztürk, B., Kaymak, Ş., & Küçük, Ö. (2022). TAGUCHI AND RSM BASED OPTIMIATION OF ENERGY CONSUMPTION ON INTERNAL GEAR PUMPS. International Journal of 3D Printing Technologies and Digital Industry, 6(1), 164-175. https://doi.org/10.46519/ij3dptdi.1001245
AMA Öztürk B, Kaymak Ş, Küçük Ö. TAGUCHI AND RSM BASED OPTIMIATION OF ENERGY CONSUMPTION ON INTERNAL GEAR PUMPS. IJ3DPTDI. April 2022;6(1):164-175. doi:10.46519/ij3dptdi.1001245
Chicago Öztürk, Burak, Şahin Kaymak, and Özkan Küçük. “TAGUCHI AND RSM BASED OPTIMIATION OF ENERGY CONSUMPTION ON INTERNAL GEAR PUMPS”. International Journal of 3D Printing Technologies and Digital Industry 6, no. 1 (April 2022): 164-75. https://doi.org/10.46519/ij3dptdi.1001245.
EndNote Öztürk B, Kaymak Ş, Küçük Ö (April 1, 2022) TAGUCHI AND RSM BASED OPTIMIATION OF ENERGY CONSUMPTION ON INTERNAL GEAR PUMPS. International Journal of 3D Printing Technologies and Digital Industry 6 1 164–175.
IEEE B. Öztürk, Ş. Kaymak, and Ö. Küçük, “TAGUCHI AND RSM BASED OPTIMIATION OF ENERGY CONSUMPTION ON INTERNAL GEAR PUMPS”, IJ3DPTDI, vol. 6, no. 1, pp. 164–175, 2022, doi: 10.46519/ij3dptdi.1001245.
ISNAD Öztürk, Burak et al. “TAGUCHI AND RSM BASED OPTIMIATION OF ENERGY CONSUMPTION ON INTERNAL GEAR PUMPS”. International Journal of 3D Printing Technologies and Digital Industry 6/1 (April 2022), 164-175. https://doi.org/10.46519/ij3dptdi.1001245.
JAMA Öztürk B, Kaymak Ş, Küçük Ö. TAGUCHI AND RSM BASED OPTIMIATION OF ENERGY CONSUMPTION ON INTERNAL GEAR PUMPS. IJ3DPTDI. 2022;6:164–175.
MLA Öztürk, Burak et al. “TAGUCHI AND RSM BASED OPTIMIATION OF ENERGY CONSUMPTION ON INTERNAL GEAR PUMPS”. International Journal of 3D Printing Technologies and Digital Industry, vol. 6, no. 1, 2022, pp. 164-75, doi:10.46519/ij3dptdi.1001245.
Vancouver Öztürk B, Kaymak Ş, Küçük Ö. TAGUCHI AND RSM BASED OPTIMIATION OF ENERGY CONSUMPTION ON INTERNAL GEAR PUMPS. IJ3DPTDI. 2022;6(1):164-75.

 download

Uluslararası 3B Yazıcı Teknolojileri ve Dijital Endüstri Dergisi Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.