Research Article
BibTex RIS Cite

NUMERICAL AND EXPERIMENTAL INVESTIGATION OF THE EFFECT OF DELAMINATION DEFECT AT MATERIALS OF POLYETHYLENE TEREPHTHALATE (PET)PRODUCED BY ADDITIVE MANUFACTURING ON FLEXURAL RESISTANCE

Year 2022, , 382 - 391, 31.12.2022
https://doi.org/10.46519/ij3dptdi.1098903

Abstract

Polyethylene terephthalate (PET) material, which is widely used in the packaging industry due to its thermal and mechanical properties, high chemical resistance, and low gas permeability, is among the most widely used polymer materials in the world. These properties have made their use in additive manufacturing methods widespread. Determining how some common additive manufacturing defects affect the products produced by these methods will increase the adoption of these technologies in the final product production. In this study, the investigation of the effect of layer non-joining defect called delamination on the impact strength of PET material produced by additive manufacturing method at different layer thicknesses was carried out experimentally and numerically. The effects to flexural stress on the artificially created layer adhesion defect on the middle layers of the parts produced and modeled with a layer thickness of 0.1/0.2/0.3mm were investigated. It has been observed that the increase in layer thickness decreases flexural strength. In addition, while the flexural strength of the specimens containing delamination decreased, the increase in layer thickness accelerated this decrease.

References

  • 1.Szczepanik, S. and Bednarczyk, P., “Bending and Compression Properties of ABS and PET Structural Materials Printed Using FDM Technology”, J. Cast. Mater. Eng., Vol. 1, Issue 39, 2017.
  • 2. Exconde, E., Co, A., Manapat, Z. and Magdaluyo, R., “Materials selection of 3D printing filament and utilization of recycled polyethylene terephthalate (PET) in a redesigned breadboard”, Procedia CIRP, Issue 84, Pages 28-32, 2019.
  • 3. Nisticò, R., “Polyethylene terephthalate (PET) in the packaging industry”, Polym. Test., Vol. 90, Issue 106707, 2020.
  • 4. Latko-Durałek, P., Dydek, K. and Boczkowska, A., “Thermal, Rheological and Mechanical Properties of PETG/rPETG Blends”, J. Polym. Environ., Vol. 27, Pages 2600–2606, 2019.
  • 5. Sarkar, K. , “Polyester derived from recycled polyethylene terephthalate waste for regenerative medicine”, RSC Adv., Vol. 4, Pages 58805–58815, 2014.
  • 6. Shamsi, R., Mir, M. and Sadeghi, G., “Novel polyester diol obtained from PET waste and its application in the synthesis of polyurethane and carbon nanotube-based composites: swelling behavior and characteristic properties”, RSC Adv., Vol. 6, Pages 38399–38415, 2016.
  • 7. Nadkarni, V. M., Shingankuli, V. L., and Jog, J. P., “Effect of blending on the crystallization behavior of PET”, J. Appl. Polym. Sci., Vol. 46, Pages 339-351, 1992.
  • 8. Reis, J. M. L., Chianelli-Junior, R., Cardoso, J. L. and Marinho, F. J. V., “Effect of recycled PET in the fracture mechanics of polymer mortar”, Constr. Build. Mater., Vol. 25, Pages 2799–2804, 2011.
  • 9. Malik, N., Kumar, P., Shrivastava, S. and Ghosh, S. B., “An overview on PET waste recycling for application in packaging”, Int. J. Plast. Technol., Vol. 211, Issue 21, Pages 1–24, 2016.
  • 10. Chen, T., Zhang, J. and You, H., “Photodegradation behavior and mechanism of poly(ethylene glycol-co-1,4-cyclohexanedimethanol terephthalate) (PETG) random copolymers: correlation with copolymer composition”, RSC Adv., Vol. 6, Pages 102778–102790, 2016.
  • 11. Wang, X., et al., “Study on the effect of dispersion phase morphology on porous structure of poly (lactic acid)/poly (ethylene terephthalate glycol-modified) blending foams”, Polymer (Guildf)., Vol. 54, Pages 5839–5851, 2013.
  • 12. Kumar, M. A., Khan, M. S. and Mishra, S. B., “Effect of machine parameters on strength and hardness of FDM printed carbon fiber reinforced PETG thermoplastics”, Mater. Today Proc., Vol. 27, Pages 975–983, 2019.
  • 13. Sood, A. K., Ohdar, R. K. and Mahapatra, S. S., “Parametric appraisal of mechanical property of fused deposition modelling processed parts”, Mater. Des., Vol. 31, Pages 287–295, 2010.
  • 14. Srinivasan, R., Prathap, P., Raj, A., Kannan, S. A. and Deepak, V., “Influence of fused deposition modeling process parameters on the mechanical properties of PETG parts”, in Materials Today: Proceedings, Vol. 27, Pages 1877–1883, 2020.
  • 15. Durgashyam, K., Reddy Indrra, M., Balakrishna, A. and Satyanarayana, K., “Experimental investigation on mechanical properties of PETG material processed by fused deposition modeling method”, in 2nd International Conference on Applied Sciences and Technology (ICAST-2019): Materials Science, Pages 2052–2059, 2019.
  • 16. Sepahi, M. T., Abusalma, H., Jovanovic, V. and Eisazadeh, H., “Mechanical Properties of 3D-Printed Parts Made of Polyethylene Terephthalate Glycol”, J. Mater. Eng. Perform., Vol. 30, Pages 6851–6861, 2021.
  • 17. Hanon, M. M., Marczis, R. & Zsidai, L. “Anisotropy Evaluation of Different Raster Directions, Spatial Orientations, and Fill Percentage of 3D Printed PETG Tensile Test Specimens”, Key Eng. Mater., Vol. 821, Pages 167–173, 2019.
  • 18. Mansour, M., Tsongas, K., Tzetzis, D. and Antoniadis, A., “Mechanical and Dynamic Behavior of Fused Filament Fabrication 3D Printed Polyethylene Terephthalate Glycol Reinforced with Carbon Fibers”, Polym. - Plast. Technol. Eng., Vol. 57, Pages 1715–1725, 2018.
  • 19. Fonseca, J., Ferreira, I. A., de Moura, M. F. S. F., Machado, M. and Alves, J. L. “Study of the interlaminar fracture under mode I loading on FFF printed parts”, Compos. Struct., Vol. 214, Pages 316–324, 2019.
  • 20. Atlıhan, G., Ovalı, İ. and Eren, A. “Eklemeli İmalat Yöntemi̇yle Üreti̇lmi̇ş Bal Petekli̇ Yapıların Ti̇treşi̇m Davranişlarının Nümeri̇k ve Deneysel Olarak İncelenmesi̇”, Int. J. 3D Print. Technol. Digit. Ind., Vol. 5, Pages 98-108, 2021.
  • 21. Somireddy, M., Singh, C. V. and Czekanski, “A. Analysis of the Material Behavior of 3D Printed Laminates Via FFF”, Exp. Mech., Vol. 59, Pages 871–881, 2019.
  • 22. Yao, T., Ouyang, H., Dai, S., Deng, Z. and Zhang, K. “Effects of manufacturing micro-structure on vibration of FFF 3D printing plates: Material characterisation, numerical analysis and experimental study”, Compos. Struct., Vol. 268, Issue 113970, 2021.
  • 23. García Plaza, E., Núñez López, P. J., Caminero Torija, M. Á. and Chacón M., J. M., “Analysis of PLA geometric properties processed by FFF additive manufacturing: Effects of process parameters and plate-extruder precision motion”, Polymers (Basel)., Vol. 11, 2019.
  • 24. Mazzanti, V., Malagutti, L. and Mollica, F. “FDM 3D printing of polymers containing natural fillers: A review of their mechanical properties”, Polymers (Basel)., Vol. 11, 2019.
  • 25. Bhandari, S. and Lopez-Anido, R. “Finite element analysis of thermoplastic polymer extrusion 3D printed material for mechanical property prediction”, Addit. Manuf., Vol. 22, Pages 187–196, 2018.
  • 26. Bellini, A. “Mechanical characterization of parts fabricated using fused deposition modeling”, Rapid Prototyp. J., Vol. 9, Pages 252–264, 2003.
  • 27. ASTM. D790 − 10 “StandardTest Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials”, http://www.ansi.org. doi:10.1520/D0790-10.
  • 28. Ameri, B., Taheri-Behrooz, F. and Aliha, M. R. M. “Evaluation of the geometrical discontinuity effect on mixed-mode I/II fracture load of FDM 3D-printed parts”, Theor. Appl. Fract. Mech., Vol. 113, Issue 102953, 2021.
Year 2022, , 382 - 391, 31.12.2022
https://doi.org/10.46519/ij3dptdi.1098903

Abstract

References

  • 1.Szczepanik, S. and Bednarczyk, P., “Bending and Compression Properties of ABS and PET Structural Materials Printed Using FDM Technology”, J. Cast. Mater. Eng., Vol. 1, Issue 39, 2017.
  • 2. Exconde, E., Co, A., Manapat, Z. and Magdaluyo, R., “Materials selection of 3D printing filament and utilization of recycled polyethylene terephthalate (PET) in a redesigned breadboard”, Procedia CIRP, Issue 84, Pages 28-32, 2019.
  • 3. Nisticò, R., “Polyethylene terephthalate (PET) in the packaging industry”, Polym. Test., Vol. 90, Issue 106707, 2020.
  • 4. Latko-Durałek, P., Dydek, K. and Boczkowska, A., “Thermal, Rheological and Mechanical Properties of PETG/rPETG Blends”, J. Polym. Environ., Vol. 27, Pages 2600–2606, 2019.
  • 5. Sarkar, K. , “Polyester derived from recycled polyethylene terephthalate waste for regenerative medicine”, RSC Adv., Vol. 4, Pages 58805–58815, 2014.
  • 6. Shamsi, R., Mir, M. and Sadeghi, G., “Novel polyester diol obtained from PET waste and its application in the synthesis of polyurethane and carbon nanotube-based composites: swelling behavior and characteristic properties”, RSC Adv., Vol. 6, Pages 38399–38415, 2016.
  • 7. Nadkarni, V. M., Shingankuli, V. L., and Jog, J. P., “Effect of blending on the crystallization behavior of PET”, J. Appl. Polym. Sci., Vol. 46, Pages 339-351, 1992.
  • 8. Reis, J. M. L., Chianelli-Junior, R., Cardoso, J. L. and Marinho, F. J. V., “Effect of recycled PET in the fracture mechanics of polymer mortar”, Constr. Build. Mater., Vol. 25, Pages 2799–2804, 2011.
  • 9. Malik, N., Kumar, P., Shrivastava, S. and Ghosh, S. B., “An overview on PET waste recycling for application in packaging”, Int. J. Plast. Technol., Vol. 211, Issue 21, Pages 1–24, 2016.
  • 10. Chen, T., Zhang, J. and You, H., “Photodegradation behavior and mechanism of poly(ethylene glycol-co-1,4-cyclohexanedimethanol terephthalate) (PETG) random copolymers: correlation with copolymer composition”, RSC Adv., Vol. 6, Pages 102778–102790, 2016.
  • 11. Wang, X., et al., “Study on the effect of dispersion phase morphology on porous structure of poly (lactic acid)/poly (ethylene terephthalate glycol-modified) blending foams”, Polymer (Guildf)., Vol. 54, Pages 5839–5851, 2013.
  • 12. Kumar, M. A., Khan, M. S. and Mishra, S. B., “Effect of machine parameters on strength and hardness of FDM printed carbon fiber reinforced PETG thermoplastics”, Mater. Today Proc., Vol. 27, Pages 975–983, 2019.
  • 13. Sood, A. K., Ohdar, R. K. and Mahapatra, S. S., “Parametric appraisal of mechanical property of fused deposition modelling processed parts”, Mater. Des., Vol. 31, Pages 287–295, 2010.
  • 14. Srinivasan, R., Prathap, P., Raj, A., Kannan, S. A. and Deepak, V., “Influence of fused deposition modeling process parameters on the mechanical properties of PETG parts”, in Materials Today: Proceedings, Vol. 27, Pages 1877–1883, 2020.
  • 15. Durgashyam, K., Reddy Indrra, M., Balakrishna, A. and Satyanarayana, K., “Experimental investigation on mechanical properties of PETG material processed by fused deposition modeling method”, in 2nd International Conference on Applied Sciences and Technology (ICAST-2019): Materials Science, Pages 2052–2059, 2019.
  • 16. Sepahi, M. T., Abusalma, H., Jovanovic, V. and Eisazadeh, H., “Mechanical Properties of 3D-Printed Parts Made of Polyethylene Terephthalate Glycol”, J. Mater. Eng. Perform., Vol. 30, Pages 6851–6861, 2021.
  • 17. Hanon, M. M., Marczis, R. & Zsidai, L. “Anisotropy Evaluation of Different Raster Directions, Spatial Orientations, and Fill Percentage of 3D Printed PETG Tensile Test Specimens”, Key Eng. Mater., Vol. 821, Pages 167–173, 2019.
  • 18. Mansour, M., Tsongas, K., Tzetzis, D. and Antoniadis, A., “Mechanical and Dynamic Behavior of Fused Filament Fabrication 3D Printed Polyethylene Terephthalate Glycol Reinforced with Carbon Fibers”, Polym. - Plast. Technol. Eng., Vol. 57, Pages 1715–1725, 2018.
  • 19. Fonseca, J., Ferreira, I. A., de Moura, M. F. S. F., Machado, M. and Alves, J. L. “Study of the interlaminar fracture under mode I loading on FFF printed parts”, Compos. Struct., Vol. 214, Pages 316–324, 2019.
  • 20. Atlıhan, G., Ovalı, İ. and Eren, A. “Eklemeli İmalat Yöntemi̇yle Üreti̇lmi̇ş Bal Petekli̇ Yapıların Ti̇treşi̇m Davranişlarının Nümeri̇k ve Deneysel Olarak İncelenmesi̇”, Int. J. 3D Print. Technol. Digit. Ind., Vol. 5, Pages 98-108, 2021.
  • 21. Somireddy, M., Singh, C. V. and Czekanski, “A. Analysis of the Material Behavior of 3D Printed Laminates Via FFF”, Exp. Mech., Vol. 59, Pages 871–881, 2019.
  • 22. Yao, T., Ouyang, H., Dai, S., Deng, Z. and Zhang, K. “Effects of manufacturing micro-structure on vibration of FFF 3D printing plates: Material characterisation, numerical analysis and experimental study”, Compos. Struct., Vol. 268, Issue 113970, 2021.
  • 23. García Plaza, E., Núñez López, P. J., Caminero Torija, M. Á. and Chacón M., J. M., “Analysis of PLA geometric properties processed by FFF additive manufacturing: Effects of process parameters and plate-extruder precision motion”, Polymers (Basel)., Vol. 11, 2019.
  • 24. Mazzanti, V., Malagutti, L. and Mollica, F. “FDM 3D printing of polymers containing natural fillers: A review of their mechanical properties”, Polymers (Basel)., Vol. 11, 2019.
  • 25. Bhandari, S. and Lopez-Anido, R. “Finite element analysis of thermoplastic polymer extrusion 3D printed material for mechanical property prediction”, Addit. Manuf., Vol. 22, Pages 187–196, 2018.
  • 26. Bellini, A. “Mechanical characterization of parts fabricated using fused deposition modeling”, Rapid Prototyp. J., Vol. 9, Pages 252–264, 2003.
  • 27. ASTM. D790 − 10 “StandardTest Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials”, http://www.ansi.org. doi:10.1520/D0790-10.
  • 28. Ameri, B., Taheri-Behrooz, F. and Aliha, M. R. M. “Evaluation of the geometrical discontinuity effect on mixed-mode I/II fracture load of FDM 3D-printed parts”, Theor. Appl. Fract. Mech., Vol. 113, Issue 102953, 2021.
There are 28 citations in total.

Details

Primary Language English
Subjects Biomaterial
Journal Section Research Article
Authors

Alperen Doğru 0000-0003-3730-3761

Ayberk Sözen 0000-0002-9657-5567

Gökdeniz Neşer 0000-0001-9218-0181

Mehmet Özgür Seydibeyoğlu 0000-0002-2584-7043

Publication Date December 31, 2022
Submission Date April 5, 2022
Published in Issue Year 2022

Cite

APA Doğru, A., Sözen, A., Neşer, G., Seydibeyoğlu, M. Ö. (2022). NUMERICAL AND EXPERIMENTAL INVESTIGATION OF THE EFFECT OF DELAMINATION DEFECT AT MATERIALS OF POLYETHYLENE TEREPHTHALATE (PET)PRODUCED BY ADDITIVE MANUFACTURING ON FLEXURAL RESISTANCE. International Journal of 3D Printing Technologies and Digital Industry, 6(3), 382-391. https://doi.org/10.46519/ij3dptdi.1098903
AMA Doğru A, Sözen A, Neşer G, Seydibeyoğlu MÖ. NUMERICAL AND EXPERIMENTAL INVESTIGATION OF THE EFFECT OF DELAMINATION DEFECT AT MATERIALS OF POLYETHYLENE TEREPHTHALATE (PET)PRODUCED BY ADDITIVE MANUFACTURING ON FLEXURAL RESISTANCE. IJ3DPTDI. December 2022;6(3):382-391. doi:10.46519/ij3dptdi.1098903
Chicago Doğru, Alperen, Ayberk Sözen, Gökdeniz Neşer, and Mehmet Özgür Seydibeyoğlu. “NUMERICAL AND EXPERIMENTAL INVESTIGATION OF THE EFFECT OF DELAMINATION DEFECT AT MATERIALS OF POLYETHYLENE TEREPHTHALATE (PET)PRODUCED BY ADDITIVE MANUFACTURING ON FLEXURAL RESISTANCE”. International Journal of 3D Printing Technologies and Digital Industry 6, no. 3 (December 2022): 382-91. https://doi.org/10.46519/ij3dptdi.1098903.
EndNote Doğru A, Sözen A, Neşer G, Seydibeyoğlu MÖ (December 1, 2022) NUMERICAL AND EXPERIMENTAL INVESTIGATION OF THE EFFECT OF DELAMINATION DEFECT AT MATERIALS OF POLYETHYLENE TEREPHTHALATE (PET)PRODUCED BY ADDITIVE MANUFACTURING ON FLEXURAL RESISTANCE. International Journal of 3D Printing Technologies and Digital Industry 6 3 382–391.
IEEE A. Doğru, A. Sözen, G. Neşer, and M. Ö. Seydibeyoğlu, “NUMERICAL AND EXPERIMENTAL INVESTIGATION OF THE EFFECT OF DELAMINATION DEFECT AT MATERIALS OF POLYETHYLENE TEREPHTHALATE (PET)PRODUCED BY ADDITIVE MANUFACTURING ON FLEXURAL RESISTANCE”, IJ3DPTDI, vol. 6, no. 3, pp. 382–391, 2022, doi: 10.46519/ij3dptdi.1098903.
ISNAD Doğru, Alperen et al. “NUMERICAL AND EXPERIMENTAL INVESTIGATION OF THE EFFECT OF DELAMINATION DEFECT AT MATERIALS OF POLYETHYLENE TEREPHTHALATE (PET)PRODUCED BY ADDITIVE MANUFACTURING ON FLEXURAL RESISTANCE”. International Journal of 3D Printing Technologies and Digital Industry 6/3 (December 2022), 382-391. https://doi.org/10.46519/ij3dptdi.1098903.
JAMA Doğru A, Sözen A, Neşer G, Seydibeyoğlu MÖ. NUMERICAL AND EXPERIMENTAL INVESTIGATION OF THE EFFECT OF DELAMINATION DEFECT AT MATERIALS OF POLYETHYLENE TEREPHTHALATE (PET)PRODUCED BY ADDITIVE MANUFACTURING ON FLEXURAL RESISTANCE. IJ3DPTDI. 2022;6:382–391.
MLA Doğru, Alperen et al. “NUMERICAL AND EXPERIMENTAL INVESTIGATION OF THE EFFECT OF DELAMINATION DEFECT AT MATERIALS OF POLYETHYLENE TEREPHTHALATE (PET)PRODUCED BY ADDITIVE MANUFACTURING ON FLEXURAL RESISTANCE”. International Journal of 3D Printing Technologies and Digital Industry, vol. 6, no. 3, 2022, pp. 382-91, doi:10.46519/ij3dptdi.1098903.
Vancouver Doğru A, Sözen A, Neşer G, Seydibeyoğlu MÖ. NUMERICAL AND EXPERIMENTAL INVESTIGATION OF THE EFFECT OF DELAMINATION DEFECT AT MATERIALS OF POLYETHYLENE TEREPHTHALATE (PET)PRODUCED BY ADDITIVE MANUFACTURING ON FLEXURAL RESISTANCE. IJ3DPTDI. 2022;6(3):382-91.

 download

Uluslararası 3B Yazıcı Teknolojileri ve Dijital Endüstri Dergisi Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.