Research Article
BibTex RIS Cite

DESIGNING HIGH GAIN REFLECT ARRAY ANTENNA WITH FRACTAL STRUCTURES

Year 2022, , 408 - 415, 31.12.2022
https://doi.org/10.46519/ij3dptdi.1147283

Abstract

In this study, it is aimed to design a high-gain reflect array antenna with fractal structures. For this purpose, firstly, the second iteration of the hexagonal fractal structure was designed and the reflect array was used as the reflective unit cell on the antenna. However, since a sufficient phase response could not be obtained and accordingly missing unit cells remained on the antenna, this unit cell was modified and a new reflective unit cell was designed. A new reflective array antenna has been designed with the hexagonal unit cell and the unit cell, which is a modified version of mentioned unit cell. On this designed antenna, there is no missing unit cell without phase response. Accordingly, the gain of the new antenna increased from 21.6 dBi to .23.1 dBi, increasing by 1.5 dBi compared to the antenna built with classical hexagonal unit cells. This result shows that the applied method is successful.

References

  • 1. Tütüncü, B., Torpi, H. and Urul, B., “A comparative study on different types of metamaterials for enhancement of microstrip patch antenna directivity at the Ku-band (12 GHz)”, Turkish Journal of Electrical Engineering and Computer Sciences, Vol. 26, Issue 3, Pages 1171-1179, 2018.
  • 1. Tütüncü, B., Torpi, H. and Urul, B., “A comparative study on different types of metamaterials for enhancement of microstrip patch antenna directivity at the Ku-band (12 GHz)”, Turkish Journal of Electrical Engineering and Computer Sciences, Vol. 26, Issue 3, Pages 1171-1179, 2018.
  • 2. Tütüncü, B. and Urul, B., “LHM superstrate for high directivity microstrip antenna”, Celal Bayar University Journal of Science, Vol. 15, Issue 1, Pages 71-74, 2019.
  • 2. Tütüncü, B. and Urul, B., “LHM superstrate for high directivity microstrip antenna”, Celal Bayar University Journal of Science, Vol. 15, Issue 1, Pages 71-74, 2019.
  • 3. Genç, A., Başyiğit, İ. B., Çolak B. and Helhel, S., “Investigation of the characteristics of low-cost and lightweight horn array antennas with novel monolithic waveguide feeding networks”, AEU - International Journal of Electronics and Communications, Vol. 89, Issue 1, Pages 15-23, 2018.
  • 3. Genç, A., Başyiğit, İ. B., Çolak B. and Helhel, S., “Investigation of the characteristics of low-cost and lightweight horn array antennas with novel monolithic waveguide feeding networks”, AEU - International Journal of Electronics and Communications, Vol. 89, Issue 1, Pages 15-23, 2018.
  • 4. Genç, A., “Gain Increase of Horn Antenna with Waveguide Feeding Network by using 3D Printing Technology”, Bayburt Üniversitesi Fen Bilimleri Dergisi, Cilt 2, Sayı 1, Sayfa 17-25, 2019.
  • 4. Genç, A., “Gain Increase of Horn Antenna with Waveguide Feeding Network by using 3D Printing Technology”, Bayburt Üniversitesi Fen Bilimleri Dergisi, Cilt 2, Sayı 1, Sayfa 17-25, 2019.
  • 5. Terki, A. B., Nedil, M., Hettak, K. and Shaker, J., “Reflectarray antenna design using hexagonal shape unit cells for 5G application”, In 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting , IEEE, Pages 1639-1640, 2018.
  • 5. Terki, A. B., Nedil, M., Hettak, K. and Shaker, J., “Reflectarray antenna design using hexagonal shape unit cells for 5G application”, In 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting , IEEE, Pages 1639-1640, 2018.
  • 6. Dahri, M.H., Jamaludda, M.H. and Abbasi M.I., “A review of high gain and high efficiency reflectarrays for 5G communications”, IEEE Access, Access 6, Pages 5973-5985, 2017.
  • 6. Dahri, M.H., Jamaludda, M.H. and Abbasi M.I., “A review of high gain and high efficiency reflectarrays for 5G communications”, IEEE Access, Access 6, Pages 5973-5985, 2017.
  • 7. Huang, J. and Encinar, J., “Reflectarray Antennas”, Wiley-IEEE Press, New York, USA, 2008.
  • 7. Huang, J. and Encinar, J., “Reflectarray Antennas”, Wiley-IEEE Press, New York, USA, 2008.
  • 8. Zubir, F., Rahim, M.K.A., Ayop, O., Wahid , A., and Majid, H. A., “Design and analysis of microstrip reflectarray antenna with minkowski shape radiating element,” Progress in Electromagnetics Research B, Vol. 24, Pages 317–331, 2010.
  • 8. Zubir, F., Rahim, M.K.A., Ayop, O., Wahid , A., and Majid, H. A., “Design and analysis of microstrip reflectarray antenna with minkowski shape radiating element,” Progress in Electromagnetics Research B, Vol. 24, Pages 317–331, 2010.
  • 9. Huang, J. and Pogorzelski, R.J., “A ka-band microstrip reflectarray with elements having variable rotation angles,” IEEE Transactions on Antennas and Propagation, Vol. 46, Issue 5, Pages 650–656, 1998.
  • 9. Huang, J. and Pogorzelski, R.J., “A ka-band microstrip reflectarray with elements having variable rotation angles,” IEEE Transactions on Antennas and Propagation, Vol. 46, Issue 5, Pages 650–656, 1998.
  • 10. Lingasamy, V. and Selvan, K. T., “A comparison of planar convex dielectric lens loaded flat reflector with parabolic reflector and reflectarray”, Microwave and Optical Technology Letters, Vol. 61 Issue 11, Pages 2500-2505, 2019.
  • 10. Lingasamy, V. and Selvan, K. T., “A comparison of planar convex dielectric lens loaded flat reflector with parabolic reflector and reflectarray”, Microwave and Optical Technology Letters, Vol. 61 Issue 11, Pages 2500-2505, 2019.
  • 11. Keyghobad, K., and Homayoon O., "Phase Response of Microstrip Reflectarray Elements by FDTD Analysis", Workshop on Computational Electromagnetics in Time-Domain, IEEE, Pages 1-3, 2007.
  • 11. Keyghobad, K., and Homayoon O., "Phase Response of Microstrip Reflectarray Elements by FDTD Analysis", Workshop on Computational Electromagnetics in Time-Domain, IEEE, Pages 1-3, 2007.
  • 12. Berry, D., Malech, R. and Kennedy, W., “The reflectarray antenna”, IEEE Transactions on Antennas and Propagation, Vol. 11, Issue 6, Pages 645-651, 1963.
  • 12. Berry, D., Malech, R. and Kennedy, W., “The reflectarray antenna”, IEEE Transactions on Antennas and Propagation, Vol. 11, Issue 6, Pages 645-651, 1963.
  • 13. Costanzo, S., Venneri, F., Di Massa, G., Borgia, A., Costanzo, A. and Raffo, A., “Fractal reflectarray antennas: state of art and new opportunities”, International Journal of Antennas and Propagation, Article ID 7165143, Pages 17, 2016.
  • 13. Costanzo, S., Venneri, F., Di Massa, G., Borgia, A., Costanzo, A. and Raffo, A., “Fractal reflectarray antennas: state of art and new opportunities”, International Journal of Antennas and Propagation, Article ID 7165143, Pages 17, 2016.
  • 14. Nesil, S., Güneş, F. and Kaya, G., “Analysis and design of X-band Reflectarray antenna using 3-D EM-based Artificial Neural Network model”, In 2012 IEEE International Conference on Ultra-Wideband, IEEE, Pages 532-536, 2012.
  • 14. Nesil, S., Güneş, F. and Kaya, G., “Analysis and design of X-band Reflectarray antenna using 3-D EM-based Artificial Neural Network model”, In 2012 IEEE International Conference on Ultra-Wideband, IEEE, Pages 532-536, 2012.

FRAKTAL YAPILAR İLE YÜKSEK KAZANÇLI YANSITICI DİZİ ANTEN TASARIMI

Year 2022, , 408 - 415, 31.12.2022
https://doi.org/10.46519/ij3dptdi.1147283

Abstract

Bu çalışmada fraktal yapılarla oluşturulan yüksek kazançlı yansıtıcı dizi anten tasarımı yapmak hedeflenmiştir. Bunun için ilk olarak altıgen fraktal yapısının 2. iterasyonu tasarlanmış ve yansıtıcı dizi anten de yansıtıcı birim hücre olarak kullanılmıştır. Fakat yeterli bir faz cevabı elde edilemediğinden ve buna bağlı olarak anten üzerinde eksik birim hücrelerin kalmasından dolayı bu birim hücre modifiye edilerek yeni bir yansıtıcı birim hücre tasarlanmıştır. Altıgen birim hücre ve bu birim hücrenin modifiye hali olan birim hücreler ile yeni bir yansıtıcı dizi anten tasarımı yapılmıştır. Tasarlanan bu antenin üzerinde faz karşılığı olmayan eksik birim hücre kalmamıştır. Buna göre yeni antenin kazancı 21,6 dBi’dan, 23,1 dBi’ya yükselerek klasik altıgen birim hücrelerle oluşturulan antene göre 1,5 dBi artmıştır. Bu sonuç uygulanan yöntemin başarılı olduğunu ortaya koymaktadır.

References

  • 1. Tütüncü, B., Torpi, H. and Urul, B., “A comparative study on different types of metamaterials for enhancement of microstrip patch antenna directivity at the Ku-band (12 GHz)”, Turkish Journal of Electrical Engineering and Computer Sciences, Vol. 26, Issue 3, Pages 1171-1179, 2018.
  • 1. Tütüncü, B., Torpi, H. and Urul, B., “A comparative study on different types of metamaterials for enhancement of microstrip patch antenna directivity at the Ku-band (12 GHz)”, Turkish Journal of Electrical Engineering and Computer Sciences, Vol. 26, Issue 3, Pages 1171-1179, 2018.
  • 2. Tütüncü, B. and Urul, B., “LHM superstrate for high directivity microstrip antenna”, Celal Bayar University Journal of Science, Vol. 15, Issue 1, Pages 71-74, 2019.
  • 2. Tütüncü, B. and Urul, B., “LHM superstrate for high directivity microstrip antenna”, Celal Bayar University Journal of Science, Vol. 15, Issue 1, Pages 71-74, 2019.
  • 3. Genç, A., Başyiğit, İ. B., Çolak B. and Helhel, S., “Investigation of the characteristics of low-cost and lightweight horn array antennas with novel monolithic waveguide feeding networks”, AEU - International Journal of Electronics and Communications, Vol. 89, Issue 1, Pages 15-23, 2018.
  • 3. Genç, A., Başyiğit, İ. B., Çolak B. and Helhel, S., “Investigation of the characteristics of low-cost and lightweight horn array antennas with novel monolithic waveguide feeding networks”, AEU - International Journal of Electronics and Communications, Vol. 89, Issue 1, Pages 15-23, 2018.
  • 4. Genç, A., “Gain Increase of Horn Antenna with Waveguide Feeding Network by using 3D Printing Technology”, Bayburt Üniversitesi Fen Bilimleri Dergisi, Cilt 2, Sayı 1, Sayfa 17-25, 2019.
  • 4. Genç, A., “Gain Increase of Horn Antenna with Waveguide Feeding Network by using 3D Printing Technology”, Bayburt Üniversitesi Fen Bilimleri Dergisi, Cilt 2, Sayı 1, Sayfa 17-25, 2019.
  • 5. Terki, A. B., Nedil, M., Hettak, K. and Shaker, J., “Reflectarray antenna design using hexagonal shape unit cells for 5G application”, In 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting , IEEE, Pages 1639-1640, 2018.
  • 5. Terki, A. B., Nedil, M., Hettak, K. and Shaker, J., “Reflectarray antenna design using hexagonal shape unit cells for 5G application”, In 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting , IEEE, Pages 1639-1640, 2018.
  • 6. Dahri, M.H., Jamaludda, M.H. and Abbasi M.I., “A review of high gain and high efficiency reflectarrays for 5G communications”, IEEE Access, Access 6, Pages 5973-5985, 2017.
  • 6. Dahri, M.H., Jamaludda, M.H. and Abbasi M.I., “A review of high gain and high efficiency reflectarrays for 5G communications”, IEEE Access, Access 6, Pages 5973-5985, 2017.
  • 7. Huang, J. and Encinar, J., “Reflectarray Antennas”, Wiley-IEEE Press, New York, USA, 2008.
  • 7. Huang, J. and Encinar, J., “Reflectarray Antennas”, Wiley-IEEE Press, New York, USA, 2008.
  • 8. Zubir, F., Rahim, M.K.A., Ayop, O., Wahid , A., and Majid, H. A., “Design and analysis of microstrip reflectarray antenna with minkowski shape radiating element,” Progress in Electromagnetics Research B, Vol. 24, Pages 317–331, 2010.
  • 8. Zubir, F., Rahim, M.K.A., Ayop, O., Wahid , A., and Majid, H. A., “Design and analysis of microstrip reflectarray antenna with minkowski shape radiating element,” Progress in Electromagnetics Research B, Vol. 24, Pages 317–331, 2010.
  • 9. Huang, J. and Pogorzelski, R.J., “A ka-band microstrip reflectarray with elements having variable rotation angles,” IEEE Transactions on Antennas and Propagation, Vol. 46, Issue 5, Pages 650–656, 1998.
  • 9. Huang, J. and Pogorzelski, R.J., “A ka-band microstrip reflectarray with elements having variable rotation angles,” IEEE Transactions on Antennas and Propagation, Vol. 46, Issue 5, Pages 650–656, 1998.
  • 10. Lingasamy, V. and Selvan, K. T., “A comparison of planar convex dielectric lens loaded flat reflector with parabolic reflector and reflectarray”, Microwave and Optical Technology Letters, Vol. 61 Issue 11, Pages 2500-2505, 2019.
  • 10. Lingasamy, V. and Selvan, K. T., “A comparison of planar convex dielectric lens loaded flat reflector with parabolic reflector and reflectarray”, Microwave and Optical Technology Letters, Vol. 61 Issue 11, Pages 2500-2505, 2019.
  • 11. Keyghobad, K., and Homayoon O., "Phase Response of Microstrip Reflectarray Elements by FDTD Analysis", Workshop on Computational Electromagnetics in Time-Domain, IEEE, Pages 1-3, 2007.
  • 11. Keyghobad, K., and Homayoon O., "Phase Response of Microstrip Reflectarray Elements by FDTD Analysis", Workshop on Computational Electromagnetics in Time-Domain, IEEE, Pages 1-3, 2007.
  • 12. Berry, D., Malech, R. and Kennedy, W., “The reflectarray antenna”, IEEE Transactions on Antennas and Propagation, Vol. 11, Issue 6, Pages 645-651, 1963.
  • 12. Berry, D., Malech, R. and Kennedy, W., “The reflectarray antenna”, IEEE Transactions on Antennas and Propagation, Vol. 11, Issue 6, Pages 645-651, 1963.
  • 13. Costanzo, S., Venneri, F., Di Massa, G., Borgia, A., Costanzo, A. and Raffo, A., “Fractal reflectarray antennas: state of art and new opportunities”, International Journal of Antennas and Propagation, Article ID 7165143, Pages 17, 2016.
  • 13. Costanzo, S., Venneri, F., Di Massa, G., Borgia, A., Costanzo, A. and Raffo, A., “Fractal reflectarray antennas: state of art and new opportunities”, International Journal of Antennas and Propagation, Article ID 7165143, Pages 17, 2016.
  • 14. Nesil, S., Güneş, F. and Kaya, G., “Analysis and design of X-band Reflectarray antenna using 3-D EM-based Artificial Neural Network model”, In 2012 IEEE International Conference on Ultra-Wideband, IEEE, Pages 532-536, 2012.
  • 14. Nesil, S., Güneş, F. and Kaya, G., “Analysis and design of X-band Reflectarray antenna using 3-D EM-based Artificial Neural Network model”, In 2012 IEEE International Conference on Ultra-Wideband, IEEE, Pages 532-536, 2012.
There are 28 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Bülent Urul 0000-0003-2656-2450

Publication Date December 31, 2022
Submission Date July 22, 2022
Published in Issue Year 2022

Cite

APA Urul, B. (2022). FRAKTAL YAPILAR İLE YÜKSEK KAZANÇLI YANSITICI DİZİ ANTEN TASARIMI. International Journal of 3D Printing Technologies and Digital Industry, 6(3), 408-415. https://doi.org/10.46519/ij3dptdi.1147283
AMA Urul B. FRAKTAL YAPILAR İLE YÜKSEK KAZANÇLI YANSITICI DİZİ ANTEN TASARIMI. IJ3DPTDI. December 2022;6(3):408-415. doi:10.46519/ij3dptdi.1147283
Chicago Urul, Bülent. “FRAKTAL YAPILAR İLE YÜKSEK KAZANÇLI YANSITICI DİZİ ANTEN TASARIMI”. International Journal of 3D Printing Technologies and Digital Industry 6, no. 3 (December 2022): 408-15. https://doi.org/10.46519/ij3dptdi.1147283.
EndNote Urul B (December 1, 2022) FRAKTAL YAPILAR İLE YÜKSEK KAZANÇLI YANSITICI DİZİ ANTEN TASARIMI. International Journal of 3D Printing Technologies and Digital Industry 6 3 408–415.
IEEE B. Urul, “FRAKTAL YAPILAR İLE YÜKSEK KAZANÇLI YANSITICI DİZİ ANTEN TASARIMI”, IJ3DPTDI, vol. 6, no. 3, pp. 408–415, 2022, doi: 10.46519/ij3dptdi.1147283.
ISNAD Urul, Bülent. “FRAKTAL YAPILAR İLE YÜKSEK KAZANÇLI YANSITICI DİZİ ANTEN TASARIMI”. International Journal of 3D Printing Technologies and Digital Industry 6/3 (December 2022), 408-415. https://doi.org/10.46519/ij3dptdi.1147283.
JAMA Urul B. FRAKTAL YAPILAR İLE YÜKSEK KAZANÇLI YANSITICI DİZİ ANTEN TASARIMI. IJ3DPTDI. 2022;6:408–415.
MLA Urul, Bülent. “FRAKTAL YAPILAR İLE YÜKSEK KAZANÇLI YANSITICI DİZİ ANTEN TASARIMI”. International Journal of 3D Printing Technologies and Digital Industry, vol. 6, no. 3, 2022, pp. 408-15, doi:10.46519/ij3dptdi.1147283.
Vancouver Urul B. FRAKTAL YAPILAR İLE YÜKSEK KAZANÇLI YANSITICI DİZİ ANTEN TASARIMI. IJ3DPTDI. 2022;6(3):408-15.

 download

Uluslararası 3B Yazıcı Teknolojileri ve Dijital Endüstri Dergisi Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.