Image Presentation
BibTex RIS Cite
Year 2023, , 268 - 276, 31.08.2023
https://doi.org/10.46519/ij3dptdi.1246758

Abstract

Supporting Institution

2209-A Üniversite Öğrencileri Araştırma Projeleri Desteği Programı TÜBİTAK

Project Number

1919B011801132

References

  • 1. World Health Organization. “Cardiovascular Diseases (CVDs)”, https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds), June 11, 2021.
  • 2. Torres, I. and Luccia, N. de, “Artificial vascular models for endovascular training (3D printing)”, Innovative Surgical Sciences, Vol. 3, Issue 3, Pages 225–234, 2018.
  • 3. Jirouskova, M., Shet, A.S., & Johnson, G.J., “A guide to murine platelet structure, function, assays, and genetic alterations”, Journal of Thrombosis and Haemostasis, Vol. 5, Issue 4, Pages 661-669, 2007.
  • 4. Suo, J., Ferrara, D.E., Sorescu, D., Guldberg, R.E., Taylor, W.R., and Giddens, D.P. “Hemodynamic shear stresses in mouse aortas: implications for atherogenesis”, Arteriosclerosis, Thrombosis, And Vascular Biology, Vol. 27, Issue 2, Pages 346-351, 2007.
  • 5. Van Kruchten, R., Cosemans, J.M., and Heemskerk, J.W., “Measurement of whole blood thrombus formation using parallel-plate flow chambers–a practical guide”, Platelets, Vol. 23, Issue 3, Pages 229-242, 2012.
  • 6. Van der Meer, A.D., Orlova, V.V., ten Dijke, P., van den Berg, A., and Mummery, C.L., “Three-dimensional co-cultures of human endothelial cells and embryonic stem cell-derived pericytes inside a microfluidic device”, Lab on a Chip, Vol. 13, Issue 18, Pages 3562-3568, 2013.
  • 7. Malda, J., Visser, J., Melchels, F.P., Jüngst, T., Hennink, W.E., Dhert, W.J.A, Groll, J., and Hutmacher, D.W., “25th Anniversary Article: Engineering Hydrogels for Biofabrication”, Advanced Materials, Vol. 25, Issue 36, Pages 5011-5028, 2013.
  • 8. Visser, J., Peters, B., Burger, T.J., Boomstra, J., Dhert, W.J., Melchels, F.P., & Malda, J., “Biofabrication of multi-material anatomically shaped tissue constructs”, Biofabrication, Vol. 5, Issue 035007, Pages 1-9, 2013.
  • 9. Tsai, M., Kita, A., Leach, J., Rounsevell, R., Huang, J.N., Moake, J., Ware R.E, Fletcher, D.A. and Lam, W.A., “In vitro modeling of the microvascular occlusion and thrombosis that occur in hematologic diseases using microfluidic technology”,Journal of Clinical İnvestigation”, Vol. 122, Issue 1, Pages 408-418, 2011.
  • 10. Zheng, Y., Chen, J., Craven, M., Choi, N.W., Totorica, S., Diaz-Santana, A., Kermani P., Hempstead, B., Fischbach-Teschl, C., Lopez, J.A., and A.D., Stroock, “In vitro microvessels for the study of angiogenesis and thrombosis”, Proceedings of The National Academy of Sciences, Vol.109, Issue 24, Pages 9342-9347, 2012.
  • 11. Stevenson, K., The full spectrum of 3d printed surgical models, www.fabbaloo.com, March 3, 2021.
  • 12. Sahin M.E., “Example of Using 3D Printers in Hospital Biomedical Units” International Journal of 3D Printing Technologies and Digital Industry, Vol.6, Issue 2, 322-328, 2022.
  • 13. Costa, P.F., Albers, H.J., Linssen, J.E., Middelkamp, H.H., van der Hout, L., Passier, R., van der Berg, A, Malda, J. and van der Meer, A.D. “Mimicking arterial thrombosis in a 3D-printed microfluidic in vitro vascular model based on computed tomography angiography data”, Lab on a Chip, Vol.17, Issue 16, Pages 2785-2792, 2017.
  • 14. Knowlton, S., Yu, C. H., Ersoy, F., Emadi, S., Khademhosseini, A., and Tasoglu, S. “3D-printed microfluidic chips with patterned, cell-laden hydrogel constructs”, Biofabrication, Vol. 8, Issue 2, Pages 025019, 2016.
  • 15. Zorlutuna, P., Annabi, N., Camci-Unal, G., Nikkhah, M., Cha, J.M., Nichol, J.W., Manbachi, A., Bae, H., Chen, S., Khademhosseini, A., “Microfabricated biomaterials for engineering 3D tissues”, Advanced Materials, Vol. 24, Issue 14, Pages 1782-1804, 2012.
  • 16. Jin, Z., Li, Y., Yu, K., Liu, L., Fu, J., Yao, X., Zhang, A., and He, Y., “3D Printing of Physical Organ Models: Recent Developments and Challenges”, Advanced Science, Vol. 8, Issue 17, Pages e2101394, 2021.
  • 17. Hacıoglu A., Yılmazer H. Ve Ustundag C. B., “3D printing for tissue engineering applications”, Politeknik Dergisi, Vol. 21, Issue 1, Pages 221-227, 2018.
  • 18. Vangunten, M. T., Walker, U. J., Do, H. G., & Knust, K. N., “3D-printed microfluidics for hands-on undergraduate laboratory experiments. Journal of Chemical Education”, Vol. 97, Issue 1, Pages 178-183, 2019.
  • 19. Sun, Z., “Clinical Applications of Patient-Specific 3D Printed Models in Cardiovascular Disease: Current Status and Future Directions”, Biomolecules, Vol.10, Issue 1577, Pages 1-34, 2020.
  • 20. Peters, E.N., “Plastics, Thermoplastics, Thermosets, and Elastomers, Handbook of Materials Selection”, Pages 363–365, John Wiley & Sons, New York, 2015.
  • 21. Montero, M., Roundy, S., Odell, D., Ahn, S.H. and Wright, P.K., “Material Characterization of Fused Deposition Modeling (FDM) ABS by Designed Experiments”, Proceedings of Rapid Prototyping & Manufacturing Conference, Cincinnati, USA, 2001.
  • 22. Wu, J., Hamada, M., “Experiments, Planning, Analysis, and Parameter Design Optimization”, John Wiley & Sons, Inc., 2000.
  • 23. Khawaja, H. al, Alabdouli, H., Alqaydi, H., Mansour, A., Ahmed, W. and Jassmi, H. al, "Investigating the Mechanical Properties of 3D Printed Components", Advances in Science and Engineering Technology International Conferences (ASET), Pages 1-7, 2020.
  • 24. Çavuşoğlu, Y. “Synthesis and characterization of cross-linked poly (dimethyl siloxane) nanocomposites”, Master’s thesis (Publication No.10007838), Istanbul Technical University, Istanbul, 2013.
  • 25. Hsiao, H. M., Lee, K. H., Liao, Y. C., & Cheng, Y. C. “Hemodynamic simulation of intra-stent blood flow”, Procedia Engineering, Vol. 36, Pages 128-136, 2020.
Year 2023, , 268 - 276, 31.08.2023
https://doi.org/10.46519/ij3dptdi.1246758

Abstract

Project Number

1919B011801132

References

  • 1. World Health Organization. “Cardiovascular Diseases (CVDs)”, https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds), June 11, 2021.
  • 2. Torres, I. and Luccia, N. de, “Artificial vascular models for endovascular training (3D printing)”, Innovative Surgical Sciences, Vol. 3, Issue 3, Pages 225–234, 2018.
  • 3. Jirouskova, M., Shet, A.S., & Johnson, G.J., “A guide to murine platelet structure, function, assays, and genetic alterations”, Journal of Thrombosis and Haemostasis, Vol. 5, Issue 4, Pages 661-669, 2007.
  • 4. Suo, J., Ferrara, D.E., Sorescu, D., Guldberg, R.E., Taylor, W.R., and Giddens, D.P. “Hemodynamic shear stresses in mouse aortas: implications for atherogenesis”, Arteriosclerosis, Thrombosis, And Vascular Biology, Vol. 27, Issue 2, Pages 346-351, 2007.
  • 5. Van Kruchten, R., Cosemans, J.M., and Heemskerk, J.W., “Measurement of whole blood thrombus formation using parallel-plate flow chambers–a practical guide”, Platelets, Vol. 23, Issue 3, Pages 229-242, 2012.
  • 6. Van der Meer, A.D., Orlova, V.V., ten Dijke, P., van den Berg, A., and Mummery, C.L., “Three-dimensional co-cultures of human endothelial cells and embryonic stem cell-derived pericytes inside a microfluidic device”, Lab on a Chip, Vol. 13, Issue 18, Pages 3562-3568, 2013.
  • 7. Malda, J., Visser, J., Melchels, F.P., Jüngst, T., Hennink, W.E., Dhert, W.J.A, Groll, J., and Hutmacher, D.W., “25th Anniversary Article: Engineering Hydrogels for Biofabrication”, Advanced Materials, Vol. 25, Issue 36, Pages 5011-5028, 2013.
  • 8. Visser, J., Peters, B., Burger, T.J., Boomstra, J., Dhert, W.J., Melchels, F.P., & Malda, J., “Biofabrication of multi-material anatomically shaped tissue constructs”, Biofabrication, Vol. 5, Issue 035007, Pages 1-9, 2013.
  • 9. Tsai, M., Kita, A., Leach, J., Rounsevell, R., Huang, J.N., Moake, J., Ware R.E, Fletcher, D.A. and Lam, W.A., “In vitro modeling of the microvascular occlusion and thrombosis that occur in hematologic diseases using microfluidic technology”,Journal of Clinical İnvestigation”, Vol. 122, Issue 1, Pages 408-418, 2011.
  • 10. Zheng, Y., Chen, J., Craven, M., Choi, N.W., Totorica, S., Diaz-Santana, A., Kermani P., Hempstead, B., Fischbach-Teschl, C., Lopez, J.A., and A.D., Stroock, “In vitro microvessels for the study of angiogenesis and thrombosis”, Proceedings of The National Academy of Sciences, Vol.109, Issue 24, Pages 9342-9347, 2012.
  • 11. Stevenson, K., The full spectrum of 3d printed surgical models, www.fabbaloo.com, March 3, 2021.
  • 12. Sahin M.E., “Example of Using 3D Printers in Hospital Biomedical Units” International Journal of 3D Printing Technologies and Digital Industry, Vol.6, Issue 2, 322-328, 2022.
  • 13. Costa, P.F., Albers, H.J., Linssen, J.E., Middelkamp, H.H., van der Hout, L., Passier, R., van der Berg, A, Malda, J. and van der Meer, A.D. “Mimicking arterial thrombosis in a 3D-printed microfluidic in vitro vascular model based on computed tomography angiography data”, Lab on a Chip, Vol.17, Issue 16, Pages 2785-2792, 2017.
  • 14. Knowlton, S., Yu, C. H., Ersoy, F., Emadi, S., Khademhosseini, A., and Tasoglu, S. “3D-printed microfluidic chips with patterned, cell-laden hydrogel constructs”, Biofabrication, Vol. 8, Issue 2, Pages 025019, 2016.
  • 15. Zorlutuna, P., Annabi, N., Camci-Unal, G., Nikkhah, M., Cha, J.M., Nichol, J.W., Manbachi, A., Bae, H., Chen, S., Khademhosseini, A., “Microfabricated biomaterials for engineering 3D tissues”, Advanced Materials, Vol. 24, Issue 14, Pages 1782-1804, 2012.
  • 16. Jin, Z., Li, Y., Yu, K., Liu, L., Fu, J., Yao, X., Zhang, A., and He, Y., “3D Printing of Physical Organ Models: Recent Developments and Challenges”, Advanced Science, Vol. 8, Issue 17, Pages e2101394, 2021.
  • 17. Hacıoglu A., Yılmazer H. Ve Ustundag C. B., “3D printing for tissue engineering applications”, Politeknik Dergisi, Vol. 21, Issue 1, Pages 221-227, 2018.
  • 18. Vangunten, M. T., Walker, U. J., Do, H. G., & Knust, K. N., “3D-printed microfluidics for hands-on undergraduate laboratory experiments. Journal of Chemical Education”, Vol. 97, Issue 1, Pages 178-183, 2019.
  • 19. Sun, Z., “Clinical Applications of Patient-Specific 3D Printed Models in Cardiovascular Disease: Current Status and Future Directions”, Biomolecules, Vol.10, Issue 1577, Pages 1-34, 2020.
  • 20. Peters, E.N., “Plastics, Thermoplastics, Thermosets, and Elastomers, Handbook of Materials Selection”, Pages 363–365, John Wiley & Sons, New York, 2015.
  • 21. Montero, M., Roundy, S., Odell, D., Ahn, S.H. and Wright, P.K., “Material Characterization of Fused Deposition Modeling (FDM) ABS by Designed Experiments”, Proceedings of Rapid Prototyping & Manufacturing Conference, Cincinnati, USA, 2001.
  • 22. Wu, J., Hamada, M., “Experiments, Planning, Analysis, and Parameter Design Optimization”, John Wiley & Sons, Inc., 2000.
  • 23. Khawaja, H. al, Alabdouli, H., Alqaydi, H., Mansour, A., Ahmed, W. and Jassmi, H. al, "Investigating the Mechanical Properties of 3D Printed Components", Advances in Science and Engineering Technology International Conferences (ASET), Pages 1-7, 2020.
  • 24. Çavuşoğlu, Y. “Synthesis and characterization of cross-linked poly (dimethyl siloxane) nanocomposites”, Master’s thesis (Publication No.10007838), Istanbul Technical University, Istanbul, 2013.
  • 25. Hsiao, H. M., Lee, K. H., Liao, Y. C., & Cheng, Y. C. “Hemodynamic simulation of intra-stent blood flow”, Procedia Engineering, Vol. 36, Pages 128-136, 2020.

VASCULAR ARTERY SIMULATION MODEL FABRICATION FOR PRE-SURGERY KIT FOR STENT APPLICATION THROUGH 3D PRINTING

Year 2023, , 268 - 276, 31.08.2023
https://doi.org/10.46519/ij3dptdi.1246758

Abstract

Thrombosis occurs of a blood clot in the vein and blocking blood flow. The formation of a clot within the artery is called arterial thrombosis. Due to arterial thrombosis, there are heart attacks and strokes that result in more than 17.9 million deaths worldwide each year. Covid-19, one of today's problems, further increases the mortality rate. The thrombosis mechanism includes factors coming from the blood and the vessel wall. This mechanism is based on local blood flow mechanisms and 3-dimensional (3D) vessel geometry. Microfluidics chip-based vascular models examine the interaction between blood and the vessel wall in vitro studies in thrombosis. Until now, the 3-dimensional geometry of the arteries and blood flow system of healthy or unhealthy individuals have not been fully modeled. In this study, a patient-specific occluded blood vessel model was obtained from computed tomography angiography (CTA) data, and miniature vascular structures were developed with a 3D printer. These structures were printed using Acrylonitrile Butadiene Styrene (ABS). 3D ABS samples were used in Polydimethylsiloxane (PDMS) based soft lithography molds to occur microfluidic systems containing miniaturized replicas of in vivo vessel geometries. A comprehensive simulation of stented vasculature was performed by flow analysis of artificial blood and cell culture by placing a commercial stent on PDMS-based models. This project has aimed to develop and characterize modules by creating microfluidic systems using 3D printers to examine the effects of stents placed in the patient's complex vascular system and to simulate operations before treatment and stent placement.

Project Number

1919B011801132

References

  • 1. World Health Organization. “Cardiovascular Diseases (CVDs)”, https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds), June 11, 2021.
  • 2. Torres, I. and Luccia, N. de, “Artificial vascular models for endovascular training (3D printing)”, Innovative Surgical Sciences, Vol. 3, Issue 3, Pages 225–234, 2018.
  • 3. Jirouskova, M., Shet, A.S., & Johnson, G.J., “A guide to murine platelet structure, function, assays, and genetic alterations”, Journal of Thrombosis and Haemostasis, Vol. 5, Issue 4, Pages 661-669, 2007.
  • 4. Suo, J., Ferrara, D.E., Sorescu, D., Guldberg, R.E., Taylor, W.R., and Giddens, D.P. “Hemodynamic shear stresses in mouse aortas: implications for atherogenesis”, Arteriosclerosis, Thrombosis, And Vascular Biology, Vol. 27, Issue 2, Pages 346-351, 2007.
  • 5. Van Kruchten, R., Cosemans, J.M., and Heemskerk, J.W., “Measurement of whole blood thrombus formation using parallel-plate flow chambers–a practical guide”, Platelets, Vol. 23, Issue 3, Pages 229-242, 2012.
  • 6. Van der Meer, A.D., Orlova, V.V., ten Dijke, P., van den Berg, A., and Mummery, C.L., “Three-dimensional co-cultures of human endothelial cells and embryonic stem cell-derived pericytes inside a microfluidic device”, Lab on a Chip, Vol. 13, Issue 18, Pages 3562-3568, 2013.
  • 7. Malda, J., Visser, J., Melchels, F.P., Jüngst, T., Hennink, W.E., Dhert, W.J.A, Groll, J., and Hutmacher, D.W., “25th Anniversary Article: Engineering Hydrogels for Biofabrication”, Advanced Materials, Vol. 25, Issue 36, Pages 5011-5028, 2013.
  • 8. Visser, J., Peters, B., Burger, T.J., Boomstra, J., Dhert, W.J., Melchels, F.P., & Malda, J., “Biofabrication of multi-material anatomically shaped tissue constructs”, Biofabrication, Vol. 5, Issue 035007, Pages 1-9, 2013.
  • 9. Tsai, M., Kita, A., Leach, J., Rounsevell, R., Huang, J.N., Moake, J., Ware R.E, Fletcher, D.A. and Lam, W.A., “In vitro modeling of the microvascular occlusion and thrombosis that occur in hematologic diseases using microfluidic technology”,Journal of Clinical İnvestigation”, Vol. 122, Issue 1, Pages 408-418, 2011.
  • 10. Zheng, Y., Chen, J., Craven, M., Choi, N.W., Totorica, S., Diaz-Santana, A., Kermani P., Hempstead, B., Fischbach-Teschl, C., Lopez, J.A., and A.D., Stroock, “In vitro microvessels for the study of angiogenesis and thrombosis”, Proceedings of The National Academy of Sciences, Vol.109, Issue 24, Pages 9342-9347, 2012.
  • 11. Stevenson, K., The full spectrum of 3d printed surgical models, www.fabbaloo.com, March 3, 2021.
  • 12. Sahin M.E., “Example of Using 3D Printers in Hospital Biomedical Units” International Journal of 3D Printing Technologies and Digital Industry, Vol.6, Issue 2, 322-328, 2022.
  • 13. Costa, P.F., Albers, H.J., Linssen, J.E., Middelkamp, H.H., van der Hout, L., Passier, R., van der Berg, A, Malda, J. and van der Meer, A.D. “Mimicking arterial thrombosis in a 3D-printed microfluidic in vitro vascular model based on computed tomography angiography data”, Lab on a Chip, Vol.17, Issue 16, Pages 2785-2792, 2017.
  • 14. Knowlton, S., Yu, C. H., Ersoy, F., Emadi, S., Khademhosseini, A., and Tasoglu, S. “3D-printed microfluidic chips with patterned, cell-laden hydrogel constructs”, Biofabrication, Vol. 8, Issue 2, Pages 025019, 2016.
  • 15. Zorlutuna, P., Annabi, N., Camci-Unal, G., Nikkhah, M., Cha, J.M., Nichol, J.W., Manbachi, A., Bae, H., Chen, S., Khademhosseini, A., “Microfabricated biomaterials for engineering 3D tissues”, Advanced Materials, Vol. 24, Issue 14, Pages 1782-1804, 2012.
  • 16. Jin, Z., Li, Y., Yu, K., Liu, L., Fu, J., Yao, X., Zhang, A., and He, Y., “3D Printing of Physical Organ Models: Recent Developments and Challenges”, Advanced Science, Vol. 8, Issue 17, Pages e2101394, 2021.
  • 17. Hacıoglu A., Yılmazer H. Ve Ustundag C. B., “3D printing for tissue engineering applications”, Politeknik Dergisi, Vol. 21, Issue 1, Pages 221-227, 2018.
  • 18. Vangunten, M. T., Walker, U. J., Do, H. G., & Knust, K. N., “3D-printed microfluidics for hands-on undergraduate laboratory experiments. Journal of Chemical Education”, Vol. 97, Issue 1, Pages 178-183, 2019.
  • 19. Sun, Z., “Clinical Applications of Patient-Specific 3D Printed Models in Cardiovascular Disease: Current Status and Future Directions”, Biomolecules, Vol.10, Issue 1577, Pages 1-34, 2020.
  • 20. Peters, E.N., “Plastics, Thermoplastics, Thermosets, and Elastomers, Handbook of Materials Selection”, Pages 363–365, John Wiley & Sons, New York, 2015.
  • 21. Montero, M., Roundy, S., Odell, D., Ahn, S.H. and Wright, P.K., “Material Characterization of Fused Deposition Modeling (FDM) ABS by Designed Experiments”, Proceedings of Rapid Prototyping & Manufacturing Conference, Cincinnati, USA, 2001.
  • 22. Wu, J., Hamada, M., “Experiments, Planning, Analysis, and Parameter Design Optimization”, John Wiley & Sons, Inc., 2000.
  • 23. Khawaja, H. al, Alabdouli, H., Alqaydi, H., Mansour, A., Ahmed, W. and Jassmi, H. al, "Investigating the Mechanical Properties of 3D Printed Components", Advances in Science and Engineering Technology International Conferences (ASET), Pages 1-7, 2020.
  • 24. Çavuşoğlu, Y. “Synthesis and characterization of cross-linked poly (dimethyl siloxane) nanocomposites”, Master’s thesis (Publication No.10007838), Istanbul Technical University, Istanbul, 2013.
  • 25. Hsiao, H. M., Lee, K. H., Liao, Y. C., & Cheng, Y. C. “Hemodynamic simulation of intra-stent blood flow”, Procedia Engineering, Vol. 36, Pages 128-136, 2020.
There are 25 citations in total.

Details

Primary Language English
Subjects Biomaterial
Journal Section Research Article
Authors

Tuğba Uğurtaş 0000-0002-9814-0567

Hakan Yılmazer 0000-0001-5602-4966

Project Number 1919B011801132
Publication Date August 31, 2023
Submission Date February 2, 2023
Published in Issue Year 2023

Cite

APA Uğurtaş, T., & Yılmazer, H. (2023). VASCULAR ARTERY SIMULATION MODEL FABRICATION FOR PRE-SURGERY KIT FOR STENT APPLICATION THROUGH 3D PRINTING. International Journal of 3D Printing Technologies and Digital Industry, 7(2), 268-276. https://doi.org/10.46519/ij3dptdi.1246758
AMA Uğurtaş T, Yılmazer H. VASCULAR ARTERY SIMULATION MODEL FABRICATION FOR PRE-SURGERY KIT FOR STENT APPLICATION THROUGH 3D PRINTING. IJ3DPTDI. August 2023;7(2):268-276. doi:10.46519/ij3dptdi.1246758
Chicago Uğurtaş, Tuğba, and Hakan Yılmazer. “VASCULAR ARTERY SIMULATION MODEL FABRICATION FOR PRE-SURGERY KIT FOR STENT APPLICATION THROUGH 3D PRINTING”. International Journal of 3D Printing Technologies and Digital Industry 7, no. 2 (August 2023): 268-76. https://doi.org/10.46519/ij3dptdi.1246758.
EndNote Uğurtaş T, Yılmazer H (August 1, 2023) VASCULAR ARTERY SIMULATION MODEL FABRICATION FOR PRE-SURGERY KIT FOR STENT APPLICATION THROUGH 3D PRINTING. International Journal of 3D Printing Technologies and Digital Industry 7 2 268–276.
IEEE T. Uğurtaş and H. Yılmazer, “VASCULAR ARTERY SIMULATION MODEL FABRICATION FOR PRE-SURGERY KIT FOR STENT APPLICATION THROUGH 3D PRINTING”, IJ3DPTDI, vol. 7, no. 2, pp. 268–276, 2023, doi: 10.46519/ij3dptdi.1246758.
ISNAD Uğurtaş, Tuğba - Yılmazer, Hakan. “VASCULAR ARTERY SIMULATION MODEL FABRICATION FOR PRE-SURGERY KIT FOR STENT APPLICATION THROUGH 3D PRINTING”. International Journal of 3D Printing Technologies and Digital Industry 7/2 (August 2023), 268-276. https://doi.org/10.46519/ij3dptdi.1246758.
JAMA Uğurtaş T, Yılmazer H. VASCULAR ARTERY SIMULATION MODEL FABRICATION FOR PRE-SURGERY KIT FOR STENT APPLICATION THROUGH 3D PRINTING. IJ3DPTDI. 2023;7:268–276.
MLA Uğurtaş, Tuğba and Hakan Yılmazer. “VASCULAR ARTERY SIMULATION MODEL FABRICATION FOR PRE-SURGERY KIT FOR STENT APPLICATION THROUGH 3D PRINTING”. International Journal of 3D Printing Technologies and Digital Industry, vol. 7, no. 2, 2023, pp. 268-76, doi:10.46519/ij3dptdi.1246758.
Vancouver Uğurtaş T, Yılmazer H. VASCULAR ARTERY SIMULATION MODEL FABRICATION FOR PRE-SURGERY KIT FOR STENT APPLICATION THROUGH 3D PRINTING. IJ3DPTDI. 2023;7(2):268-76.

 download

Uluslararası 3B Yazıcı Teknolojileri ve Dijital Endüstri Dergisi Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.