Research Article
BibTex RIS Cite

TERMOELEKTRIK JENERATÖRLERDE ISIL PERFORMANSIN DENEYSEL İNCELENMESİ

Year 2023, , 259 - 267, 31.08.2023
https://doi.org/10.46519/ij3dptdi.1250308

Abstract

Termoelektrik modüller (TEM), ısıl enerji yönetimi ve sera gazı emisyonunu azaltma konusunda büyük potansiyele sahip ve uygulanabilir teknolojilerden biri olarak kabul edilmektedir. Termoelektrik modüller (TEM) yarıiletken malzemelerden oluşup, elektrik kullanarak ısıtma veya soğutma yapabilirler. Bunun tersi olarak da sıcaklık farkını kullanarak elektrik üretebilirler. Termoelektrik modüller elektriksel olarak seri, termal olaraksa paralel bağlıdırlar. TEM çalışma prensiplerine göre termoelektrik jeneratör ve termoelektrik soğutucu olmak üzere iki gruba ayrılırlar. Bu araştırmada, termoelektrik jeneratör (TEG) kullanarak bir deney düzeneği oluşturulmuştur. Yapılan deneysel çalışmalarda tüm TEG yüzeyi kullanılarak analizler gerçekleştirilmiştir. Buna ek olarak, deneysel çalışmada iki farklı durum için (TEG+ ısı emici ve Sadece TEG) incelenmiştir. TEG’ın sıcak tarafı elektrikli ısıtıcıya bağlanmıştır. Isı emici ise soğuk tarafa yerleştirilmiştir. Termal kamera kullanarak sıcaklık ölçümü yapılmıştır. Elde edilen sonuçlara göre, TEG ve ısı emici olduğu durum için sistemin performansı %60 arttığı gösterilmiştir.

Supporting Institution

Aydın Adnan Menderes Üniversitesi

Project Number

MF-19009

Thanks

Bu çalışma, Aydın Adnan Menderes Üniversitesi Bilimsel Araştırma Projeleri (MF-19009) tarafından finanse edilen bir projenin sonuçlarını sunmaktadır. Proje ekibi Aydın Adnan Menderes Üniversitesi'nin sağladığı desteğe teşekkürlerini sunmaktadır.

References

  • 1. EIA. U.S. Energy Information Administration, Annual Energy Outlook, 2018.
  • 2. Melcor, Thermoelectric Engineering Handbook, http://www.melcor.com, Ocak 28, 2023.
  • 3. Hodes, M., “Precision Temperature Control using Thermoelectric Module”, Heat Transfer Calculation McGraw Hill, New York, 2004.
  • 4. Ho Sung L., “Thermoelectrics: Design and Materials”, Wiley, UK, 2016.
  • 5. Twaha, S., Zhu, J., Yan, Y., Li, B., “A comprehensive review of thermoelectric technology: Materials, applications, modelling and performance improvement”, Renewable and Sustainable Energy Reviews, Vol. 65, Pages. 698-726, 2016.
  • 6. Pourkiaei, S.M., Ahmadi, M.H., Sadeghzadeh, M., Moosavi, S., Pourfayaz, F., Chen, L., Yazdi, M.A.P., Kumar, R., “Thermoelectric cooler and thermoelectric generator devices a review of present and potential applications, modeling and materials”, Energy, Vol. 186, Article 115849, 2019.
  • 7. Hodes, M., “On One-Dimensional Analysis of Thermoelectric Modules (TEMs)”, IEEE Trans. Components Packaging, Vol. 28, Issue 2, Pages 218-229, 2005.
  • 8. Esarte, J., Min, G., Rowe, D.M., “Modelling heat exchangers for thermoelectric generators”, Journal of Power Sources, Vol. 93, Issues 1-2, Pages 72-76, 2001.
  • 9. Astrain, D., Vian, J. G., Martínez, A., Rodríguez, A., “Study of the Influence of Heat Exchangers' Thermal Resistances on a Thermoelectric Generation System”, Energy, Vol. 35, Issue 2, Pages 602-610, 2010.
  • 10. Hsu, C.T., Huang, G.Y., Chu, H.S., Yu, B., Yao, D.J., “Experiments and simulations on low- temperature waste heat harvesting system by thermoelectric power generators”, Applied Energy Vol. 88, Issue 4, Pages 1291-1297, 2011.
  • 11. David, B., Ramousse, J., Luo., “ Optimization of thermoelectric heat pumps by operating condition management and heat exchanger design”, Energy Conversion and Management, Vol. 60, Pages 125-133, 2012.
  • 12. Date, A., Date, A., Dixon, C., Akbarzadeh, A.,“ Progress of thermoelectric power generation systems: prospect for small to medium scale power generation”, Renewable and Sustainable Energy Reviews, Vol. 33, Pages 371-81, 2014.
  • 13. Matsumoto, M., Mori, M., Haraguchi, T., Ohtani, M., Kubo, T., Matsumoto, K., Matsuda, H., “Development of state of the art compact and lightweight thermoelectric generator using vacuum space structure”, SAE International Journal of Engines, Vol. 8, Issue 4, Pages 1815-1825, 2015.

EXPERIMENTAL INVESTIGATION OF THE THERMAL PERFORMANCE IN THERMOELECTRIC GENERATORS

Year 2023, , 259 - 267, 31.08.2023
https://doi.org/10.46519/ij3dptdi.1250308

Abstract

Thermoelectric modules (TEM) are recognized as one of the viable technologies with great potential for thermal energy management and greenhouse gas emission reduction. Thermoelectric modules (TEM) are composed of semiconductor materials and can heat or cool using electricity. Conversely, they can generate electricity using the temperature difference. Thermoelectric modules are electrically connected in series and thermally connected in parallel. They are divided into two groups as thermoelectric generator and thermoelectric cooler according to their working principles. In this research, an experimental setup was created using a thermoelectric generator (TEG). In the experimental studies, the analysis was carried out using the entire TEG surface. In addition, two different cases (TEG + heat sink and TEG only) were investigated in the experimental study. The hot side of the TEG is connected to the electric heater. The heat sink was placed on the cold side. The temperature was measured using a thermal camera. According to the results obtained, it was shown that the performance of the system increased by 60% for the case with TEG and heat sink.

Project Number

MF-19009

References

  • 1. EIA. U.S. Energy Information Administration, Annual Energy Outlook, 2018.
  • 2. Melcor, Thermoelectric Engineering Handbook, http://www.melcor.com, Ocak 28, 2023.
  • 3. Hodes, M., “Precision Temperature Control using Thermoelectric Module”, Heat Transfer Calculation McGraw Hill, New York, 2004.
  • 4. Ho Sung L., “Thermoelectrics: Design and Materials”, Wiley, UK, 2016.
  • 5. Twaha, S., Zhu, J., Yan, Y., Li, B., “A comprehensive review of thermoelectric technology: Materials, applications, modelling and performance improvement”, Renewable and Sustainable Energy Reviews, Vol. 65, Pages. 698-726, 2016.
  • 6. Pourkiaei, S.M., Ahmadi, M.H., Sadeghzadeh, M., Moosavi, S., Pourfayaz, F., Chen, L., Yazdi, M.A.P., Kumar, R., “Thermoelectric cooler and thermoelectric generator devices a review of present and potential applications, modeling and materials”, Energy, Vol. 186, Article 115849, 2019.
  • 7. Hodes, M., “On One-Dimensional Analysis of Thermoelectric Modules (TEMs)”, IEEE Trans. Components Packaging, Vol. 28, Issue 2, Pages 218-229, 2005.
  • 8. Esarte, J., Min, G., Rowe, D.M., “Modelling heat exchangers for thermoelectric generators”, Journal of Power Sources, Vol. 93, Issues 1-2, Pages 72-76, 2001.
  • 9. Astrain, D., Vian, J. G., Martínez, A., Rodríguez, A., “Study of the Influence of Heat Exchangers' Thermal Resistances on a Thermoelectric Generation System”, Energy, Vol. 35, Issue 2, Pages 602-610, 2010.
  • 10. Hsu, C.T., Huang, G.Y., Chu, H.S., Yu, B., Yao, D.J., “Experiments and simulations on low- temperature waste heat harvesting system by thermoelectric power generators”, Applied Energy Vol. 88, Issue 4, Pages 1291-1297, 2011.
  • 11. David, B., Ramousse, J., Luo., “ Optimization of thermoelectric heat pumps by operating condition management and heat exchanger design”, Energy Conversion and Management, Vol. 60, Pages 125-133, 2012.
  • 12. Date, A., Date, A., Dixon, C., Akbarzadeh, A.,“ Progress of thermoelectric power generation systems: prospect for small to medium scale power generation”, Renewable and Sustainable Energy Reviews, Vol. 33, Pages 371-81, 2014.
  • 13. Matsumoto, M., Mori, M., Haraguchi, T., Ohtani, M., Kubo, T., Matsumoto, K., Matsuda, H., “Development of state of the art compact and lightweight thermoelectric generator using vacuum space structure”, SAE International Journal of Engines, Vol. 8, Issue 4, Pages 1815-1825, 2015.
Year 2023, , 259 - 267, 31.08.2023
https://doi.org/10.46519/ij3dptdi.1250308

Abstract

Project Number

MF-19009

References

  • 1. EIA. U.S. Energy Information Administration, Annual Energy Outlook, 2018.
  • 2. Melcor, Thermoelectric Engineering Handbook, http://www.melcor.com, Ocak 28, 2023.
  • 3. Hodes, M., “Precision Temperature Control using Thermoelectric Module”, Heat Transfer Calculation McGraw Hill, New York, 2004.
  • 4. Ho Sung L., “Thermoelectrics: Design and Materials”, Wiley, UK, 2016.
  • 5. Twaha, S., Zhu, J., Yan, Y., Li, B., “A comprehensive review of thermoelectric technology: Materials, applications, modelling and performance improvement”, Renewable and Sustainable Energy Reviews, Vol. 65, Pages. 698-726, 2016.
  • 6. Pourkiaei, S.M., Ahmadi, M.H., Sadeghzadeh, M., Moosavi, S., Pourfayaz, F., Chen, L., Yazdi, M.A.P., Kumar, R., “Thermoelectric cooler and thermoelectric generator devices a review of present and potential applications, modeling and materials”, Energy, Vol. 186, Article 115849, 2019.
  • 7. Hodes, M., “On One-Dimensional Analysis of Thermoelectric Modules (TEMs)”, IEEE Trans. Components Packaging, Vol. 28, Issue 2, Pages 218-229, 2005.
  • 8. Esarte, J., Min, G., Rowe, D.M., “Modelling heat exchangers for thermoelectric generators”, Journal of Power Sources, Vol. 93, Issues 1-2, Pages 72-76, 2001.
  • 9. Astrain, D., Vian, J. G., Martínez, A., Rodríguez, A., “Study of the Influence of Heat Exchangers' Thermal Resistances on a Thermoelectric Generation System”, Energy, Vol. 35, Issue 2, Pages 602-610, 2010.
  • 10. Hsu, C.T., Huang, G.Y., Chu, H.S., Yu, B., Yao, D.J., “Experiments and simulations on low- temperature waste heat harvesting system by thermoelectric power generators”, Applied Energy Vol. 88, Issue 4, Pages 1291-1297, 2011.
  • 11. David, B., Ramousse, J., Luo., “ Optimization of thermoelectric heat pumps by operating condition management and heat exchanger design”, Energy Conversion and Management, Vol. 60, Pages 125-133, 2012.
  • 12. Date, A., Date, A., Dixon, C., Akbarzadeh, A.,“ Progress of thermoelectric power generation systems: prospect for small to medium scale power generation”, Renewable and Sustainable Energy Reviews, Vol. 33, Pages 371-81, 2014.
  • 13. Matsumoto, M., Mori, M., Haraguchi, T., Ohtani, M., Kubo, T., Matsumoto, K., Matsuda, H., “Development of state of the art compact and lightweight thermoelectric generator using vacuum space structure”, SAE International Journal of Engines, Vol. 8, Issue 4, Pages 1815-1825, 2015.
There are 13 citations in total.

Details

Primary Language Turkish
Subjects Mechanical Engineering
Journal Section Research Article
Authors

Mustafa Asker 0000-0001-5989-3366

İsmail Böğrekci 0000-0002-9494-5405

Pınar Demircioğlu 0000-0003-1375-5616

Project Number MF-19009
Publication Date August 31, 2023
Submission Date February 12, 2023
Published in Issue Year 2023

Cite

APA Asker, M., Böğrekci, İ., & Demircioğlu, P. (2023). TERMOELEKTRIK JENERATÖRLERDE ISIL PERFORMANSIN DENEYSEL İNCELENMESİ. International Journal of 3D Printing Technologies and Digital Industry, 7(2), 259-267. https://doi.org/10.46519/ij3dptdi.1250308
AMA Asker M, Böğrekci İ, Demircioğlu P. TERMOELEKTRIK JENERATÖRLERDE ISIL PERFORMANSIN DENEYSEL İNCELENMESİ. IJ3DPTDI. August 2023;7(2):259-267. doi:10.46519/ij3dptdi.1250308
Chicago Asker, Mustafa, İsmail Böğrekci, and Pınar Demircioğlu. “TERMOELEKTRIK JENERATÖRLERDE ISIL PERFORMANSIN DENEYSEL İNCELENMESİ”. International Journal of 3D Printing Technologies and Digital Industry 7, no. 2 (August 2023): 259-67. https://doi.org/10.46519/ij3dptdi.1250308.
EndNote Asker M, Böğrekci İ, Demircioğlu P (August 1, 2023) TERMOELEKTRIK JENERATÖRLERDE ISIL PERFORMANSIN DENEYSEL İNCELENMESİ. International Journal of 3D Printing Technologies and Digital Industry 7 2 259–267.
IEEE M. Asker, İ. Böğrekci, and P. Demircioğlu, “TERMOELEKTRIK JENERATÖRLERDE ISIL PERFORMANSIN DENEYSEL İNCELENMESİ”, IJ3DPTDI, vol. 7, no. 2, pp. 259–267, 2023, doi: 10.46519/ij3dptdi.1250308.
ISNAD Asker, Mustafa et al. “TERMOELEKTRIK JENERATÖRLERDE ISIL PERFORMANSIN DENEYSEL İNCELENMESİ”. International Journal of 3D Printing Technologies and Digital Industry 7/2 (August 2023), 259-267. https://doi.org/10.46519/ij3dptdi.1250308.
JAMA Asker M, Böğrekci İ, Demircioğlu P. TERMOELEKTRIK JENERATÖRLERDE ISIL PERFORMANSIN DENEYSEL İNCELENMESİ. IJ3DPTDI. 2023;7:259–267.
MLA Asker, Mustafa et al. “TERMOELEKTRIK JENERATÖRLERDE ISIL PERFORMANSIN DENEYSEL İNCELENMESİ”. International Journal of 3D Printing Technologies and Digital Industry, vol. 7, no. 2, 2023, pp. 259-67, doi:10.46519/ij3dptdi.1250308.
Vancouver Asker M, Böğrekci İ, Demircioğlu P. TERMOELEKTRIK JENERATÖRLERDE ISIL PERFORMANSIN DENEYSEL İNCELENMESİ. IJ3DPTDI. 2023;7(2):259-67.

 download

Uluslararası 3B Yazıcı Teknolojileri ve Dijital Endüstri Dergisi Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.