Research Article
BibTex RIS Cite
Year 2023, , 105 - 113, 29.04.2023
https://doi.org/10.46519/ij3dptdi.1256993

Abstract

Supporting Institution

Bursa Teknik Üniversitesi Bilimsel Araştırma Projeleri Birimi

Project Number

211N003

References

  • 1. Vilardell, A.M., Takezawa, A., Du Plessis, A., Takata, N., Krakhmalev, P., Kobashi, M., Yadroitsev, I., “Topology optimization and characterization of Ti6Al4V ELI cellular lattice structures by laser powder bed fusion for biomedical applications”, Materials Science and Engineering: A, Vol. 766, 138330, 2019.
  • 2. Özel, Ş., Zeren, M., Alp, Ç.N., “Application Of Layered Manufacturing Technology With 3d Printers In Automotive Industry”, International Journal of 3D Printing Technologies and Digital Industry, Vol. 4, Issue 1, Pages 18-31, 2020.
  • 3. Özsoy, K., Duman, B., Gültekin, D.İ., “Metal part production with additive manufacturing for aerospace and defense industry”, International Journal of Technological Sciences, Vol.11, Issue 3, Pages 201-210, 2019.
  • 4. Aslan, B., Yıldız, A.R., “Optimum design of automobile components using lattice structures for additive manufacturing”, Materials Testing, Vol. 62, Issue 6, Pages 633-639, 2020.
  • 5. Bhushan, B., Caspers, M., “An overview of additive manufacturing (3D printing) for microfabrication”, Microsystem Technologies, Vol. 23, Issue 4, Pages 1117-1124, 2017. 6. Ngo, T. D., Kashani, A., Imbalzano, G., Nguyen, K. T., Hui, D., “Additive manufacturing (3D printing): A review of materials, methods, applications and challenges”, Composites Part B: Engineering, Vol. 143, Pages 172-196, 2018.
  • 7. Mohamed, O. A., Masood, S. H., Bhowmik, J. L., “Optimization of fused deposition modeling process parameters: a review of current research and future prospects”, Advances in Manufacturing, Vol. 3, Issue 1, Pages 42-53, 2015.
  • 8. Başçı, Ü.G., Yamanoğlu, R., “Yeni Nesil Üretim Teknolojisi : FDM ile Eklemeli İmalat”, International Journal of 3D Printing Technologies and Digital Industry, Vol. 5, Issue 2, Pages 339-352, 2021.
  • 9. Dezaki, M. L., Ariffin, M. K. A. M., Hatami, S., “An overview of fused deposition modelling (FDM): Research, development and process optimization”, Rapid Prototyping Journal, Vol. 27, Issue 3, Pages 562-582, 2021.
  • 10. Tuğcu, S. E., Şenaysoy, S., Demirci, E., “Effect of Build Orientation and Layer Thickness on Tensile Propoerties of FDM Printed PLA and PA Materials”, 1st International Materials Engineering and Advanced Manufacturing Technologies Congress, Pages 105-110, İstanbul, 2022.
  • 11. Altan, M., Eryildiz, M., Gumus, B., Kahraman, Y., “Effects of process parameters on the quality of PLA products fabricated by fused deposition modeling (FDM): surface roughness and tensile strength”, Materials Testing, Vol. 60, Issue 5, Pages 471-477, 2018.
  • 12. Hsueh, M. H., Lai, C. J., Chung, C. F., Wang, S. H., Huang, W. C., Pan, C. Y., ... & Hsieh, C. H., “Effect of Printing Parameters on the Tensile Properties of 3D-Printed Polylactic Acid (PLA) Based on Fused Deposition Modeling”, Polymers, Vol. 13, Issue 14, 2387, 2021.
  • 13. Kamaal, M., Anas, M., Rastogi, H., Bhardwaj, N., Rahaman, A., “Effect of FDM process parameters on mechanical properties of 3D-printed carbon fibre–PLA composite”, Progress in Additive Manufacturing, Vol. 6, Issue 1, Pages 63-69, 2021.
  • 14. Samykano, M., Selvamani, S. K., Kadirgama, K., Ngui, W. K., Kanagaraj, G., Sudhakar, K., “Mechanical property of FDM printed ABS: influence of printing parameters”, The International Journal of Advanced Manufacturing Technology, Vol. 102, Issue 9, Pages 2779-2796, 2019.
  • 15. Camargo, J. C., Machado, Á. R., Almeida, E. C., Silva, E. F. M. S., “Mechanical properties of PLA-graphene filament for FDM 3D printing”, The International Journal of Advanced Manufacturing Technology”, Vol. 103, Issue 5, Pages 2423-2443, 2019.
  • 16. Popescu, D., Zapciu, A., Amza, C., Baciu, F., Marinescu, R., “FDM process parameters influence over the mechanical properties of polymer specimens: A review”, Polymer Testing, Vol. 69, Pages 157-166, 2018.
  • 17. Fernandez-Vicente, M., Calle, W., Ferrandiz, S., Conejero, A., “Effect of infill parameters on tensile mechanical behavior in desktop 3D printing”, 3D printing and additive manufacturing, Vol. 3, Issue 3, Pages 183-192, 2016.
  • 18. Dobos, J., Hanon, M. M., Oldal, I., “Effect of infill density and pattern on the specific load capacity of FDM 3D-printed PLA multi-layer sandwich”, Journal of Polymer Engineering, Vol. 42, Issue 2, Pages 118-128, 2021.
  • 19. Eryildiz, M., “The effects of infill patterns on the mechanical properties of 3D printed PLA parts fabricated by FDM”, Ukrainian Journal of Mechanical Engineering and Materials Science, Vol. 7, Pages 1-8, 2021.
  • 20. Solomon, I. J., Sevvel, P., Gunasekaran, J., “A review on the various processing parameters in FDM”, Materials Today: Proceedings, Vol. 37, Pages 509-514, 2021.
  • 21. Algarni, M., Ghazali, S., “Comparative study of the sensitivity of PLA, ABS, PEEK, and PETG’s mechanical properties to FDM printing process parameters”, Crystals, Vol. 11, Issue 8, 995, 2021. 22. Pan, C., Han, Y., Lu, J., “Design and optimization of lattice structures: A review”, Applied Sciences, Vol. 10, Issue 18, 6374, 2020.
  • 23. Baykasoğlu, A., Baykasoğlu, C., Cetin, E., Multi-objective crashworthiness optimization of lattice structure filled thin-walled tubes”, Thin-Walled Structures, Vol. 149, 106630, 2020.
  • 24. Sağbaş, B., Gürkan, D., “Additively manufactured Ti6Al4V lattice structures for biomedical applications”, International Journal of 3D Printing Technologies and Digital Industry, Vol. 5, Issue 2, Pages 155-163, 2021.
  • 25. Yin, S., Chen, H., Wu, Y., Li, Y., Xu, J., “Introducing composite lattice core sandwich structure as an alternative proposal for engine hood”, Composite Structures, Vol. 201, Pages 131-140, 2018. 26. Kulangara, A. J., Rao, C. S. P., Bose, P. S. C. “Generation and optimization of lattice structure on a spur gear”, Materials Today: Proceedings, Vol. 5, Issue 2, Pages 5068-5073, 2018.
  • 27. Nasrullah, A. I. H., Santosa, S. P., Dirgantara, T., “Design and optimization of crashworthy components based on lattice structure configuration”, Structures, Vol. 26, Pages 969-981, 2020.
  • 28. Poyraz, Ö., Bilici, B. E., Gedik, Ş. C. “Numerical Investigations and Benchmarking of The Physical and Elastic Properties of 316L Cubic Lattice Structures Fabricated by Selective Laser Melting” International Journal of 3D Printing Technologies and Digital Industry, Vol. 6, Issue 1, Pages 13-22, 2022.
  • 29. Tang, C., Liu, J., Yang, Y., Liu, Y., Jiang, S., Hao, W., “Effect of process parameters on mechanical properties of 3D printed PLA lattice structures”, Composites Part C: Open Access, Vol. 3, 100076, 2020.
  • 30. Seharing, A., Azman, A. H., Abdullah, S., “A review on integration of lightweight gradient lattice structures in additive manufacturing parts”, Advances in Mechanical Engineering, Vol. 12, Issue 6, 1687814020916951, 2020.
  • 31. Zhang, X. Z., Leary, M., Tang, H. P., Song, T., Qian, M., “Selective electron beam manufactured Ti-6Al-4V lattice structures for orthopedic implant applications: Current status and outstanding challenges” Current Opinion in Solid State and Materials Science, Vol. 22, Issue 3, Pages 75-99, 2018.
  • 32. Cao, X., Xiao, D., Li, Y., Wen, W., Zhao, T., Chen, Z., Fang, D., “Dynamic compressive behavior of a modified additively manufactured rhombic dodecahedron 316L stainless steel lattice structure”, Thin-Walled Structures, Vol. 148, 106586, 2020.
  • 33. Mancini, E., Utzeri, M., Sasso, M., “Investigation on Homogeneous Modeling of Gyroid Lattice Structures: Numerical Study in Static and Dynamic Conditions” Key Engineering Materials, Vol. 926, Pages 2119-2126, 2022
  • 34. Yildirim, A., Demirci, E., Karagöz, S., Özcan, Ş., Yildiz, A.R., “Experimental and numerical investigation of crashworthiness performance for optimal automobile structures using response surface methodology and oppositional based learning differential evolution algorithm”, Materials Testing, Vol. 65, Issue 3, Pages 346-363, 2023.
  • 35. Albak, E. İ., “Optimization for multi-cell thin-walled tubes under quasi-static three-point bending”, Journal of the Brazilian Society of Mechanical Sciences and Engineering, Vol. 44, Issue 5, 207, 2022.
  • 36. Butt, J., Bhaskar, R., Mohaghegh, V., “Analysing the effects of layer heights and line widths on FFF-printed thermoplastics”, The International Journal of Advanced Manufacturing Technology, Vol. 121, Issue 11-12, Pages 7383-7411, 2022.

THE EFFECT OF NOZZLE DIAMETER AND LAYER THICKNESS ON MECHANICAL BEHAVİOUR OF 3D PRINTED PLA LATTICE STRUCTURES UNDER QUASI-STATIC LOADING

Year 2023, , 105 - 113, 29.04.2023
https://doi.org/10.46519/ij3dptdi.1256993

Abstract

Lattice structures are widely preferred because they have good properties such as lightness, high energy absorption capacity and strength. Moreover, these lattice structures can be produced by utilizing 3D printer. Therefore, this study aimed to investigate the effect of the mechanical behavior of the different printing parameters on the lattice structures. Firstly, FBCC and FBCCZ lattice structures were printed with various printing parameters such as nozzle diameter of 0.25 mm-0.4 mm and layer thickness of 0.1 mm–0.15 mm. Then, quasi-static compression tests were carried out to determine the mechanical behavior of lattice structures. Force-displacement behavior, equivalent elastic modulus and energy absorption capabilities of lattice structures printed with different parameters were calculated from the results of quasi-static compression test. According to the results, it was observed that the mechanical behavior was significantly affected when the nozzle diameter and layer thickness were changed. It was determined that the strength and energy absorption of the structures printed with a nozzle diameter of 0.25 mm and a layer thickness of 1.5 mm were decreased. In addition, it was observed that the effect of the printing parameters on the mechanical behavior can be different according to the lattice type and lattice rod diameter.

Project Number

211N003

References

  • 1. Vilardell, A.M., Takezawa, A., Du Plessis, A., Takata, N., Krakhmalev, P., Kobashi, M., Yadroitsev, I., “Topology optimization and characterization of Ti6Al4V ELI cellular lattice structures by laser powder bed fusion for biomedical applications”, Materials Science and Engineering: A, Vol. 766, 138330, 2019.
  • 2. Özel, Ş., Zeren, M., Alp, Ç.N., “Application Of Layered Manufacturing Technology With 3d Printers In Automotive Industry”, International Journal of 3D Printing Technologies and Digital Industry, Vol. 4, Issue 1, Pages 18-31, 2020.
  • 3. Özsoy, K., Duman, B., Gültekin, D.İ., “Metal part production with additive manufacturing for aerospace and defense industry”, International Journal of Technological Sciences, Vol.11, Issue 3, Pages 201-210, 2019.
  • 4. Aslan, B., Yıldız, A.R., “Optimum design of automobile components using lattice structures for additive manufacturing”, Materials Testing, Vol. 62, Issue 6, Pages 633-639, 2020.
  • 5. Bhushan, B., Caspers, M., “An overview of additive manufacturing (3D printing) for microfabrication”, Microsystem Technologies, Vol. 23, Issue 4, Pages 1117-1124, 2017. 6. Ngo, T. D., Kashani, A., Imbalzano, G., Nguyen, K. T., Hui, D., “Additive manufacturing (3D printing): A review of materials, methods, applications and challenges”, Composites Part B: Engineering, Vol. 143, Pages 172-196, 2018.
  • 7. Mohamed, O. A., Masood, S. H., Bhowmik, J. L., “Optimization of fused deposition modeling process parameters: a review of current research and future prospects”, Advances in Manufacturing, Vol. 3, Issue 1, Pages 42-53, 2015.
  • 8. Başçı, Ü.G., Yamanoğlu, R., “Yeni Nesil Üretim Teknolojisi : FDM ile Eklemeli İmalat”, International Journal of 3D Printing Technologies and Digital Industry, Vol. 5, Issue 2, Pages 339-352, 2021.
  • 9. Dezaki, M. L., Ariffin, M. K. A. M., Hatami, S., “An overview of fused deposition modelling (FDM): Research, development and process optimization”, Rapid Prototyping Journal, Vol. 27, Issue 3, Pages 562-582, 2021.
  • 10. Tuğcu, S. E., Şenaysoy, S., Demirci, E., “Effect of Build Orientation and Layer Thickness on Tensile Propoerties of FDM Printed PLA and PA Materials”, 1st International Materials Engineering and Advanced Manufacturing Technologies Congress, Pages 105-110, İstanbul, 2022.
  • 11. Altan, M., Eryildiz, M., Gumus, B., Kahraman, Y., “Effects of process parameters on the quality of PLA products fabricated by fused deposition modeling (FDM): surface roughness and tensile strength”, Materials Testing, Vol. 60, Issue 5, Pages 471-477, 2018.
  • 12. Hsueh, M. H., Lai, C. J., Chung, C. F., Wang, S. H., Huang, W. C., Pan, C. Y., ... & Hsieh, C. H., “Effect of Printing Parameters on the Tensile Properties of 3D-Printed Polylactic Acid (PLA) Based on Fused Deposition Modeling”, Polymers, Vol. 13, Issue 14, 2387, 2021.
  • 13. Kamaal, M., Anas, M., Rastogi, H., Bhardwaj, N., Rahaman, A., “Effect of FDM process parameters on mechanical properties of 3D-printed carbon fibre–PLA composite”, Progress in Additive Manufacturing, Vol. 6, Issue 1, Pages 63-69, 2021.
  • 14. Samykano, M., Selvamani, S. K., Kadirgama, K., Ngui, W. K., Kanagaraj, G., Sudhakar, K., “Mechanical property of FDM printed ABS: influence of printing parameters”, The International Journal of Advanced Manufacturing Technology, Vol. 102, Issue 9, Pages 2779-2796, 2019.
  • 15. Camargo, J. C., Machado, Á. R., Almeida, E. C., Silva, E. F. M. S., “Mechanical properties of PLA-graphene filament for FDM 3D printing”, The International Journal of Advanced Manufacturing Technology”, Vol. 103, Issue 5, Pages 2423-2443, 2019.
  • 16. Popescu, D., Zapciu, A., Amza, C., Baciu, F., Marinescu, R., “FDM process parameters influence over the mechanical properties of polymer specimens: A review”, Polymer Testing, Vol. 69, Pages 157-166, 2018.
  • 17. Fernandez-Vicente, M., Calle, W., Ferrandiz, S., Conejero, A., “Effect of infill parameters on tensile mechanical behavior in desktop 3D printing”, 3D printing and additive manufacturing, Vol. 3, Issue 3, Pages 183-192, 2016.
  • 18. Dobos, J., Hanon, M. M., Oldal, I., “Effect of infill density and pattern on the specific load capacity of FDM 3D-printed PLA multi-layer sandwich”, Journal of Polymer Engineering, Vol. 42, Issue 2, Pages 118-128, 2021.
  • 19. Eryildiz, M., “The effects of infill patterns on the mechanical properties of 3D printed PLA parts fabricated by FDM”, Ukrainian Journal of Mechanical Engineering and Materials Science, Vol. 7, Pages 1-8, 2021.
  • 20. Solomon, I. J., Sevvel, P., Gunasekaran, J., “A review on the various processing parameters in FDM”, Materials Today: Proceedings, Vol. 37, Pages 509-514, 2021.
  • 21. Algarni, M., Ghazali, S., “Comparative study of the sensitivity of PLA, ABS, PEEK, and PETG’s mechanical properties to FDM printing process parameters”, Crystals, Vol. 11, Issue 8, 995, 2021. 22. Pan, C., Han, Y., Lu, J., “Design and optimization of lattice structures: A review”, Applied Sciences, Vol. 10, Issue 18, 6374, 2020.
  • 23. Baykasoğlu, A., Baykasoğlu, C., Cetin, E., Multi-objective crashworthiness optimization of lattice structure filled thin-walled tubes”, Thin-Walled Structures, Vol. 149, 106630, 2020.
  • 24. Sağbaş, B., Gürkan, D., “Additively manufactured Ti6Al4V lattice structures for biomedical applications”, International Journal of 3D Printing Technologies and Digital Industry, Vol. 5, Issue 2, Pages 155-163, 2021.
  • 25. Yin, S., Chen, H., Wu, Y., Li, Y., Xu, J., “Introducing composite lattice core sandwich structure as an alternative proposal for engine hood”, Composite Structures, Vol. 201, Pages 131-140, 2018. 26. Kulangara, A. J., Rao, C. S. P., Bose, P. S. C. “Generation and optimization of lattice structure on a spur gear”, Materials Today: Proceedings, Vol. 5, Issue 2, Pages 5068-5073, 2018.
  • 27. Nasrullah, A. I. H., Santosa, S. P., Dirgantara, T., “Design and optimization of crashworthy components based on lattice structure configuration”, Structures, Vol. 26, Pages 969-981, 2020.
  • 28. Poyraz, Ö., Bilici, B. E., Gedik, Ş. C. “Numerical Investigations and Benchmarking of The Physical and Elastic Properties of 316L Cubic Lattice Structures Fabricated by Selective Laser Melting” International Journal of 3D Printing Technologies and Digital Industry, Vol. 6, Issue 1, Pages 13-22, 2022.
  • 29. Tang, C., Liu, J., Yang, Y., Liu, Y., Jiang, S., Hao, W., “Effect of process parameters on mechanical properties of 3D printed PLA lattice structures”, Composites Part C: Open Access, Vol. 3, 100076, 2020.
  • 30. Seharing, A., Azman, A. H., Abdullah, S., “A review on integration of lightweight gradient lattice structures in additive manufacturing parts”, Advances in Mechanical Engineering, Vol. 12, Issue 6, 1687814020916951, 2020.
  • 31. Zhang, X. Z., Leary, M., Tang, H. P., Song, T., Qian, M., “Selective electron beam manufactured Ti-6Al-4V lattice structures for orthopedic implant applications: Current status and outstanding challenges” Current Opinion in Solid State and Materials Science, Vol. 22, Issue 3, Pages 75-99, 2018.
  • 32. Cao, X., Xiao, D., Li, Y., Wen, W., Zhao, T., Chen, Z., Fang, D., “Dynamic compressive behavior of a modified additively manufactured rhombic dodecahedron 316L stainless steel lattice structure”, Thin-Walled Structures, Vol. 148, 106586, 2020.
  • 33. Mancini, E., Utzeri, M., Sasso, M., “Investigation on Homogeneous Modeling of Gyroid Lattice Structures: Numerical Study in Static and Dynamic Conditions” Key Engineering Materials, Vol. 926, Pages 2119-2126, 2022
  • 34. Yildirim, A., Demirci, E., Karagöz, S., Özcan, Ş., Yildiz, A.R., “Experimental and numerical investigation of crashworthiness performance for optimal automobile structures using response surface methodology and oppositional based learning differential evolution algorithm”, Materials Testing, Vol. 65, Issue 3, Pages 346-363, 2023.
  • 35. Albak, E. İ., “Optimization for multi-cell thin-walled tubes under quasi-static three-point bending”, Journal of the Brazilian Society of Mechanical Sciences and Engineering, Vol. 44, Issue 5, 207, 2022.
  • 36. Butt, J., Bhaskar, R., Mohaghegh, V., “Analysing the effects of layer heights and line widths on FFF-printed thermoplastics”, The International Journal of Advanced Manufacturing Technology, Vol. 121, Issue 11-12, Pages 7383-7411, 2022.
There are 33 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Research Article
Authors

Emre Demirci 0000-0002-1968-0291

Safa Şenaysoy 0000-0002-2982-3209

Salih Emre Tuğcu 0000-0003-1880-8596

Project Number 211N003
Early Pub Date April 28, 2023
Publication Date April 29, 2023
Submission Date February 27, 2023
Published in Issue Year 2023

Cite

APA Demirci, E., Şenaysoy, S., & Tuğcu, S. E. (2023). THE EFFECT OF NOZZLE DIAMETER AND LAYER THICKNESS ON MECHANICAL BEHAVİOUR OF 3D PRINTED PLA LATTICE STRUCTURES UNDER QUASI-STATIC LOADING. International Journal of 3D Printing Technologies and Digital Industry, 7(1), 105-113. https://doi.org/10.46519/ij3dptdi.1256993
AMA Demirci E, Şenaysoy S, Tuğcu SE. THE EFFECT OF NOZZLE DIAMETER AND LAYER THICKNESS ON MECHANICAL BEHAVİOUR OF 3D PRINTED PLA LATTICE STRUCTURES UNDER QUASI-STATIC LOADING. IJ3DPTDI. April 2023;7(1):105-113. doi:10.46519/ij3dptdi.1256993
Chicago Demirci, Emre, Safa Şenaysoy, and Salih Emre Tuğcu. “THE EFFECT OF NOZZLE DIAMETER AND LAYER THICKNESS ON MECHANICAL BEHAVİOUR OF 3D PRINTED PLA LATTICE STRUCTURES UNDER QUASI-STATIC LOADING”. International Journal of 3D Printing Technologies and Digital Industry 7, no. 1 (April 2023): 105-13. https://doi.org/10.46519/ij3dptdi.1256993.
EndNote Demirci E, Şenaysoy S, Tuğcu SE (April 1, 2023) THE EFFECT OF NOZZLE DIAMETER AND LAYER THICKNESS ON MECHANICAL BEHAVİOUR OF 3D PRINTED PLA LATTICE STRUCTURES UNDER QUASI-STATIC LOADING. International Journal of 3D Printing Technologies and Digital Industry 7 1 105–113.
IEEE E. Demirci, S. Şenaysoy, and S. E. Tuğcu, “THE EFFECT OF NOZZLE DIAMETER AND LAYER THICKNESS ON MECHANICAL BEHAVİOUR OF 3D PRINTED PLA LATTICE STRUCTURES UNDER QUASI-STATIC LOADING”, IJ3DPTDI, vol. 7, no. 1, pp. 105–113, 2023, doi: 10.46519/ij3dptdi.1256993.
ISNAD Demirci, Emre et al. “THE EFFECT OF NOZZLE DIAMETER AND LAYER THICKNESS ON MECHANICAL BEHAVİOUR OF 3D PRINTED PLA LATTICE STRUCTURES UNDER QUASI-STATIC LOADING”. International Journal of 3D Printing Technologies and Digital Industry 7/1 (April 2023), 105-113. https://doi.org/10.46519/ij3dptdi.1256993.
JAMA Demirci E, Şenaysoy S, Tuğcu SE. THE EFFECT OF NOZZLE DIAMETER AND LAYER THICKNESS ON MECHANICAL BEHAVİOUR OF 3D PRINTED PLA LATTICE STRUCTURES UNDER QUASI-STATIC LOADING. IJ3DPTDI. 2023;7:105–113.
MLA Demirci, Emre et al. “THE EFFECT OF NOZZLE DIAMETER AND LAYER THICKNESS ON MECHANICAL BEHAVİOUR OF 3D PRINTED PLA LATTICE STRUCTURES UNDER QUASI-STATIC LOADING”. International Journal of 3D Printing Technologies and Digital Industry, vol. 7, no. 1, 2023, pp. 105-13, doi:10.46519/ij3dptdi.1256993.
Vancouver Demirci E, Şenaysoy S, Tuğcu SE. THE EFFECT OF NOZZLE DIAMETER AND LAYER THICKNESS ON MECHANICAL BEHAVİOUR OF 3D PRINTED PLA LATTICE STRUCTURES UNDER QUASI-STATIC LOADING. IJ3DPTDI. 2023;7(1):105-13.

 download

Uluslararası 3B Yazıcı Teknolojileri ve Dijital Endüstri Dergisi Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.