Research Article
BibTex RIS Cite

EXPERIMENTAL DETERMINATION OF THE OPTIMUM CUTTING TOOL FOR CNC MILLING OF 3D PRINTED PLA PARTS

Year 2023, , 150 - 160, 31.08.2023
https://doi.org/10.46519/ij3dptdi.1267634

Abstract

The purpose of this study is to determine the most suitable cutting tool for achieving the desired diameter dimensions in parts produced using PLA material in a 3D printer. A plastic plate in the shape of a rectangular prism with dimensions of 90x40x10 mm was printed without holes with a 100% filling ratio in a 3D printer. A belt-pulley mechanism requiring bearing assembly was designed, manufactured, and tested for applicability. The study successfully identified the optimum parameters for achieving a 17 mm diameter measurement with the desired tolerance in PLA material without causing melt damage. These parameters are spindle speed of 15000 rpm, feed rate of 500 mm/min, cutting depth of 0.5 mm, minimum end mill diameter of 10 mm, and 4 cutting edges. The study also found that the morphological properties of the PLA workpiece were affected by the cutting process of different diameter milling cutters. The findings of this study can be useful for improving the accuracy and efficiency of 3D printing and CNC milling processes. This study provides important insights into the appropriate cutting tool for this process of parts produced using PLA material. The identified optimum parameters can help reduce energy-time-raw material losses and accumulation of waste PLA material, which are some of the most important problems of manufacturing with 3D printers.

References

  • 1. Lalegani Dezaki, M., Mohd Ariffin, M. K. A., & Baharuddin, B. T. H. T. “Experimental study of drilling 3D printed polylactic acid (PLA) in FDM process”. Fused Deposition Modeling Based 3D Printing, Pages 85-106, 2021.
  • 2. Vidakis, N., Petousis, M., Mountakis, N., & Kechagias, J. D. “Material extrusion 3D printing and friction stir welding: an insight into the weldability of polylactic acid plates based on a full factorial design”. The International Journal of Advanced Manufacturing Technology, Vol. 121, Issue 5-6, Pages 3817-3839, 2022.
  • 3. El Mehtedi, M., Buonadonna, P., Carta, M., El Mohtadi, R., Marongiu, G., Loi, G., & Aymerich, F. “Effects of milling parameters on roughness and burr formation in 3D-printed PLA components”. Procedia Computer Science, Vol. 217, Pages 1560-1569, 2023.
  • 4. Moradi, M., Karami Moghadam, M., Shamsborhan, M., Bodaghi, M., & Falavandi, H. “Post-processing of FDM 3D-printed polylactic acid parts by laser beam cutting”. Polymers, Vol. 12, Issue 3, Pages 550, 2020.
  • 5. Sandhu, K., Singh, G., Singh, S., Kumar, R., Prakash, C., Ramakrishna, S., ... & Pruncu, C. I. “Surface characteristics of machined polystyrene with 3D printed thermoplastic tool”. Materials, Vol. 13, Issue 12, Pages 2729, 2020.
  • 6. Sneha, N., & Balamurugan, K. “Micro-drilling optimization study using RSM on PLA-bronze composite filament printed using FDM”. IEEE 2nd Mysore Sub Section International Conference (MysuruCon), Pages 1-5, Mysuru, 2022.
  • 7. Borra, N. D., & Neigapula, V. S. N. “Parametric optimization for dimensional correctness of 3D printed part using masked stereolithography: Taguchi method”. Rapid Prototyping Journal, Vol. 29, Issue 1, Pages 166-184, 2023. 8. Lambiase, F., Genna, S., & Leone, C. “Laser finishing of 3D printed parts produced by material extrusion”. Optics and lasers in engineering, Vol.124, Pages 105801, 2020.
  • 9. Kumar, A., Alam, Z., Khan, D. A., & Jha, S. “Nanofinishing of FDM-fabricated components using ball end magnetorheological finishing process”. Materials and Manufacturing Processes, Vol. 34, Issue 2, Pages 232-242, 2019.
  • 10. Lalegani Dezaki, M., Mohd Ariffin, M. K. A., & Ismail, M. I. S. “Effects of CNC machining on surface roughness in fused deposition modelling (FDM) products”. Materials, Vol. 13, Issue 11, Pages 2608, 2020.
  • 11. Mathew, A., Kishore, S. R., Tomy, A. T., Sugavaneswaran, M., Scholz, S. G., Elkaseer, A., ... & John Rajan, A. “Vapour polishing of fused deposition modelling (FDM) parts: a critical review of different techniques, and subsequent surface finish and mechanical properties of the post-processed 3D-printed parts”. Progress in Additive Manufacturing, Pages 1-18, 2023.
  • 12. Bhattiprolu, V. S., & Crawford, G. A. “Microstructural evolution and mechanical behavior of heat treated Ti-6Al-4V powders”. Metallography, Microstructure, and Analysis, Vol. 7, Pages 761-768, 2018.
  • 13. Kuruoğlu Y, Akgün M & Demir H. “Modelling and optimization of surface roughness and tensile strength of ABS, PLA and PETG samples produced by FDM method”. International Journal of 3D Printing Technologies and Digital Industry, Vol. 6, Issue 3, Pages 358-369, 2022.
  • 14. Günay M, Gündüz S, Yılmaz H, Yaşar N, & Kaçar R. “Optimization of 3D printing operation parameters for tensile strength in PLA based sample”. Politeknik Dergisi, Vol. 23 Issue 1, Pages 73-79, 2020.
  • 15. Nwodu, A. L. “An experimental approach to studying first-layer adhesion in robotic printing operations” Doctoral dissertation, Florida Agricultural and Mechanical University, 2019.
  • 16. Taib, N. A. A. B., Rahman, M. R., Huda, D., Kuok, K. K., Hamdan, S., Bakri, M. K. B., ... & Khan, A. “A review on poly lactic acid (PLA) as a biodegradable polymer”. Polymer Bulletin, Pages 1-35, 2022.
  • 17. Ncube, L. K., Ude, A. U., Ogunmuyiwa, E. N., Zulkifli, R., & Beas, I. N. “Environmental impact of food packaging materials: A review of contemporary development from conventional plastics to polylactic acid based materials”. Materials, Vol. 13, Issue 21, Pages 4994, 2020.
  • 18. Karagöz, İ., & Öksüz, M. “Methods for joining thermoplastics by friction stir welding”. Journal of Çukurova University Faculty of Engineering and Architecture, Vol. 31, Issue 1, Pages 19-28, 2016.
  • 19. Tiwary, V. K., Arunkumar, P., & Malik, V. R. “An overview on joining/welding as post-processing technique to circumvent the build volume limitation of an FDM-3D printer”. Rapid prototyping journal, Vol. 27, Issue 4, Pages 808-821, 2021.
  • 20. Pămărac, R. G., & Petruse, R. E. “Study regarding the optimal milling parameters for finishing 3D printed parts from ABS and PLA materials”. Acta Universitatis Cibiniensis. Technical Series, Vol. 70, Issue 1, Pages 66-72, 2018.

EXPERIMENTAL DETERMINATION OF THE OPTIMUM CUTTING TOOL FOR CNC MILLING OF 3D PRINTED PLA PARTS

Year 2023, , 150 - 160, 31.08.2023
https://doi.org/10.46519/ij3dptdi.1267634

Abstract

References

  • 1. Lalegani Dezaki, M., Mohd Ariffin, M. K. A., & Baharuddin, B. T. H. T. “Experimental study of drilling 3D printed polylactic acid (PLA) in FDM process”. Fused Deposition Modeling Based 3D Printing, Pages 85-106, 2021.
  • 2. Vidakis, N., Petousis, M., Mountakis, N., & Kechagias, J. D. “Material extrusion 3D printing and friction stir welding: an insight into the weldability of polylactic acid plates based on a full factorial design”. The International Journal of Advanced Manufacturing Technology, Vol. 121, Issue 5-6, Pages 3817-3839, 2022.
  • 3. El Mehtedi, M., Buonadonna, P., Carta, M., El Mohtadi, R., Marongiu, G., Loi, G., & Aymerich, F. “Effects of milling parameters on roughness and burr formation in 3D-printed PLA components”. Procedia Computer Science, Vol. 217, Pages 1560-1569, 2023.
  • 4. Moradi, M., Karami Moghadam, M., Shamsborhan, M., Bodaghi, M., & Falavandi, H. “Post-processing of FDM 3D-printed polylactic acid parts by laser beam cutting”. Polymers, Vol. 12, Issue 3, Pages 550, 2020.
  • 5. Sandhu, K., Singh, G., Singh, S., Kumar, R., Prakash, C., Ramakrishna, S., ... & Pruncu, C. I. “Surface characteristics of machined polystyrene with 3D printed thermoplastic tool”. Materials, Vol. 13, Issue 12, Pages 2729, 2020.
  • 6. Sneha, N., & Balamurugan, K. “Micro-drilling optimization study using RSM on PLA-bronze composite filament printed using FDM”. IEEE 2nd Mysore Sub Section International Conference (MysuruCon), Pages 1-5, Mysuru, 2022.
  • 7. Borra, N. D., & Neigapula, V. S. N. “Parametric optimization for dimensional correctness of 3D printed part using masked stereolithography: Taguchi method”. Rapid Prototyping Journal, Vol. 29, Issue 1, Pages 166-184, 2023. 8. Lambiase, F., Genna, S., & Leone, C. “Laser finishing of 3D printed parts produced by material extrusion”. Optics and lasers in engineering, Vol.124, Pages 105801, 2020.
  • 9. Kumar, A., Alam, Z., Khan, D. A., & Jha, S. “Nanofinishing of FDM-fabricated components using ball end magnetorheological finishing process”. Materials and Manufacturing Processes, Vol. 34, Issue 2, Pages 232-242, 2019.
  • 10. Lalegani Dezaki, M., Mohd Ariffin, M. K. A., & Ismail, M. I. S. “Effects of CNC machining on surface roughness in fused deposition modelling (FDM) products”. Materials, Vol. 13, Issue 11, Pages 2608, 2020.
  • 11. Mathew, A., Kishore, S. R., Tomy, A. T., Sugavaneswaran, M., Scholz, S. G., Elkaseer, A., ... & John Rajan, A. “Vapour polishing of fused deposition modelling (FDM) parts: a critical review of different techniques, and subsequent surface finish and mechanical properties of the post-processed 3D-printed parts”. Progress in Additive Manufacturing, Pages 1-18, 2023.
  • 12. Bhattiprolu, V. S., & Crawford, G. A. “Microstructural evolution and mechanical behavior of heat treated Ti-6Al-4V powders”. Metallography, Microstructure, and Analysis, Vol. 7, Pages 761-768, 2018.
  • 13. Kuruoğlu Y, Akgün M & Demir H. “Modelling and optimization of surface roughness and tensile strength of ABS, PLA and PETG samples produced by FDM method”. International Journal of 3D Printing Technologies and Digital Industry, Vol. 6, Issue 3, Pages 358-369, 2022.
  • 14. Günay M, Gündüz S, Yılmaz H, Yaşar N, & Kaçar R. “Optimization of 3D printing operation parameters for tensile strength in PLA based sample”. Politeknik Dergisi, Vol. 23 Issue 1, Pages 73-79, 2020.
  • 15. Nwodu, A. L. “An experimental approach to studying first-layer adhesion in robotic printing operations” Doctoral dissertation, Florida Agricultural and Mechanical University, 2019.
  • 16. Taib, N. A. A. B., Rahman, M. R., Huda, D., Kuok, K. K., Hamdan, S., Bakri, M. K. B., ... & Khan, A. “A review on poly lactic acid (PLA) as a biodegradable polymer”. Polymer Bulletin, Pages 1-35, 2022.
  • 17. Ncube, L. K., Ude, A. U., Ogunmuyiwa, E. N., Zulkifli, R., & Beas, I. N. “Environmental impact of food packaging materials: A review of contemporary development from conventional plastics to polylactic acid based materials”. Materials, Vol. 13, Issue 21, Pages 4994, 2020.
  • 18. Karagöz, İ., & Öksüz, M. “Methods for joining thermoplastics by friction stir welding”. Journal of Çukurova University Faculty of Engineering and Architecture, Vol. 31, Issue 1, Pages 19-28, 2016.
  • 19. Tiwary, V. K., Arunkumar, P., & Malik, V. R. “An overview on joining/welding as post-processing technique to circumvent the build volume limitation of an FDM-3D printer”. Rapid prototyping journal, Vol. 27, Issue 4, Pages 808-821, 2021.
  • 20. Pămărac, R. G., & Petruse, R. E. “Study regarding the optimal milling parameters for finishing 3D printed parts from ABS and PLA materials”. Acta Universitatis Cibiniensis. Technical Series, Vol. 70, Issue 1, Pages 66-72, 2018.
There are 19 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Research Article
Authors

Fuat Kartal 0000-0002-2567-9705

Arslan Kaptan 0000-0002-2431-9329

Publication Date August 31, 2023
Submission Date March 19, 2023
Published in Issue Year 2023

Cite

APA Kartal, F., & Kaptan, A. (2023). EXPERIMENTAL DETERMINATION OF THE OPTIMUM CUTTING TOOL FOR CNC MILLING OF 3D PRINTED PLA PARTS. International Journal of 3D Printing Technologies and Digital Industry, 7(2), 150-160. https://doi.org/10.46519/ij3dptdi.1267634
AMA Kartal F, Kaptan A. EXPERIMENTAL DETERMINATION OF THE OPTIMUM CUTTING TOOL FOR CNC MILLING OF 3D PRINTED PLA PARTS. IJ3DPTDI. August 2023;7(2):150-160. doi:10.46519/ij3dptdi.1267634
Chicago Kartal, Fuat, and Arslan Kaptan. “EXPERIMENTAL DETERMINATION OF THE OPTIMUM CUTTING TOOL FOR CNC MILLING OF 3D PRINTED PLA PARTS”. International Journal of 3D Printing Technologies and Digital Industry 7, no. 2 (August 2023): 150-60. https://doi.org/10.46519/ij3dptdi.1267634.
EndNote Kartal F, Kaptan A (August 1, 2023) EXPERIMENTAL DETERMINATION OF THE OPTIMUM CUTTING TOOL FOR CNC MILLING OF 3D PRINTED PLA PARTS. International Journal of 3D Printing Technologies and Digital Industry 7 2 150–160.
IEEE F. Kartal and A. Kaptan, “EXPERIMENTAL DETERMINATION OF THE OPTIMUM CUTTING TOOL FOR CNC MILLING OF 3D PRINTED PLA PARTS”, IJ3DPTDI, vol. 7, no. 2, pp. 150–160, 2023, doi: 10.46519/ij3dptdi.1267634.
ISNAD Kartal, Fuat - Kaptan, Arslan. “EXPERIMENTAL DETERMINATION OF THE OPTIMUM CUTTING TOOL FOR CNC MILLING OF 3D PRINTED PLA PARTS”. International Journal of 3D Printing Technologies and Digital Industry 7/2 (August 2023), 150-160. https://doi.org/10.46519/ij3dptdi.1267634.
JAMA Kartal F, Kaptan A. EXPERIMENTAL DETERMINATION OF THE OPTIMUM CUTTING TOOL FOR CNC MILLING OF 3D PRINTED PLA PARTS. IJ3DPTDI. 2023;7:150–160.
MLA Kartal, Fuat and Arslan Kaptan. “EXPERIMENTAL DETERMINATION OF THE OPTIMUM CUTTING TOOL FOR CNC MILLING OF 3D PRINTED PLA PARTS”. International Journal of 3D Printing Technologies and Digital Industry, vol. 7, no. 2, 2023, pp. 150-6, doi:10.46519/ij3dptdi.1267634.
Vancouver Kartal F, Kaptan A. EXPERIMENTAL DETERMINATION OF THE OPTIMUM CUTTING TOOL FOR CNC MILLING OF 3D PRINTED PLA PARTS. IJ3DPTDI. 2023;7(2):150-6.

 download

Uluslararası 3B Yazıcı Teknolojileri ve Dijital Endüstri Dergisi Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.