Research Article
BibTex RIS Cite

EVALUATION OF CEMENT GAP OF INLAY RESTORATIONS FABRICATED USİNG A 3D PRINTING SYSTEM

Year 2023, , 505 - 512, 31.12.2023
https://doi.org/10.46519/ij3dptdi.1309683

Abstract

The objective of this study was to assess the cement gap in inlay restorations fabricated by using a three-dimensional (3D) printing system.In this investigation, a total of 60 typodont teeth (30 mandibular molars and 30 maxillary molars) were utilized. Half of the specimens (n=15) underwent the preparation of mesio-occlusal (MO) cavities, while the remaining half (n=15) had mesio-occlusal-distal (MOD) cavities prepared. The occlusal cavities exhibited a width of 2.5-3 mm from buccal to lingual and a depth of 2 mm from the pulp, whereas the proximal inlay cavities showcased a line depth of 1.5 mm, a line thickness of 1 mm, and a buccolingual width of 5 mm. The specimens underwent scanning with an intraoral digital scanner (TRIOS 3 Basic, Copenhagen, Denmark). Afterwards, the design of inlays was accomplished by using EXOCAD software (Exocad Dental CAD 2.2, Darmstadt, Germany), and the fabrication of inlay restorations was carried out utilizing a 3D printer (Phrozen sonic mini 4K SLA, Hsinchu, Taiwan). Silicone replica method was employed to evaluate the cement gap of the restorations. The sections were analyzed by using a stereomicroscope (EUROMEX, Nexius Zoom, The Netherlands) at a magnification of x10, and measurements were obtained from three distinct locations. The obtained measurements were subjected to analysis using Adobe Photoshop software, and the average values were derived. Data analysis was performed by using Kruskal-Wallis and Pairwise-Comparisons tests in SPSS 22.0 software (α<0.05). No significant differences in the cement gap values between the printed the inlay restorations and MO cavities prepared in the mandibular and maxillary molars (p=1.000). No significant differences were observed in the cement gap between the inlay restorations fabricated with 3D printer and the MOD cavities prepared in the mandibular and maxillary molars and (p=1.000). The findings of this study suggest that the MO inlay restorations fabricated by using 3D printer exhibit adequate precision and can be used safely.

References

  • 1. Seo, D.,Yi, Y.,Roh, B.,“The effect of preparation designs on the marginal and internal gaps in Cerec3 partial ceramic crowns”, Journal of Dentistry, Vol. 37, Issue 5, Pages 374–382, 2009.
  • 2. Sener-Yamaner, I. D.,Sertgöz, A.,Toz-Akalın, T., Özcan, M., “Effect of material and fabrication technique on marginal fit and fracture resistance of adhesively luted inlays made of CAD/CAM ceramics and hybrid materials”, Journal of Adhesion Science and Technology, Vol. 31, Issue 1, Pages 55–70, 2017.
  • 3. Kim, D.Y., Kim, J.H., Kim, H.Y., Kim, W.C., “Comparison and evaluation of marginal and internal gaps in cobalt–chromium alloy copings fabricated using subtractive and additive manufacturing”, Journal of Prosthodontic Research, Vol. 62, Issue 1, Pages 56–64, 2018.
  • 4. Awad, A., Trenfield, S. J., Gaisford, S., Basit, A. W., “3D printed medicines: A new branch of digital healthcare” International Journal of Pharmaceutics, Vol. 548, Issue 1, Pages 586–596, 2018.
  • 5. Van Noort, R., “The future of dental devices is digital”, Dental Materials, Vol. 28, Issue 1, Pages. 3–12, 2012.
  • 6. Koch, G. K., Gallucci, G. O., Lee, S. J., “Accuracy in the digital workflow: From data acquisition to the digitally milled cast”, The Journal of Prosthetic Dentistry, Vol. 115, Issue. 6, Pages 749–754, 2016.
  • 7. Dawood, A., Marti, B. M., Sauret-Jackson, V., Darwood, A., “3D printing in dentistry”, British Dental Journal, Vol. 219, Issue 11, Pages 521–529, 2015.
  • 8. Alharbi, N., Osman, R., Wismeijer, D., “Effects of build direction on the mechanical properties of 3D-printed complete coverage interim dental restorations” The Journal of Prosthetic Dentistry, Vol. 115, Issue 6, Pages 760–767, 2016.
  • 9. Stansbury, J. W., Idacavage, M. J.,”3D printing with polymers: Challenges among expanding options and opportunities”, Dental Materials, Vol. 32, Issue 1, Pages 54–64, 2016.
  • 10. Sun J., Zhang, F., “The application of rapid prototyping in prosthodontics”, Journal of Prosthodontics: Implant, Esthetic and Reconstructive Dentistry, Vol. 21, Issue 8, Pages 641–644, 2012.
  • 11. Abduo, J., Lyons, K., Bennamoun, M., “Trends in computer-aided manufacturing in prosthodontics: a review of the available streams”, International Journal of Dentistry, Vol. 2014, 2014.
  • 12. Lee, W.S., Lee, D.H., Lee, K.B., “Evaluation of internal fit of interim crown fabricated with CAD/CAM milling and 3D printing system”, The Journal of Advanced Prosthodontics, Vol. 9, Issue 4, Pages 265–270, 2017.
  • 13. Peng, C.C., Chung, K.H., Yau, H.T., “Assessment of the internal fit and marginal integrity of interim crowns made by different manufacturing methods”, The Journal of Prosthetic Dentistry, Vol. 123, Issue 3, Pages 514–522, 2020.
  • 14. Park, J.Y., Bae, S.Y., . Lee, J.J, Kim J.H., Kim, H.Y., Kim, W.C., “Evaluation of the marginal and internal gaps of three different dental prostheses: comparison of the silicone replica technique and three-dimensional superimposition analysis”, The Journal of Advanced Prosthodontics., Vol. 9, Issue 3, Pages 159–169, 2017.
  • 15. Laurent, M., Scheer, P., Dejou, J., Laborde, G., “Clinical evaluation of the marginal fit of cast crowns–validation of the silicone replica method”, Journal of Oral Rehabilitation, Vol. 35, Issue 2, Pages 116–122, 2008.
  • 16. Kessler, A., Hickel, R., Reymus, M., “3D printing in dentistry—State of the art”, Operative Dentistry,Vol. 45, Issue 1, Pages 30–40, 2020.
  • 17. Park, S.M., Park, J.M., Kim, S.K., Heo, S.J., Koak J.Y., “Flexural strength of 3D-printing resin materials for provisional fixed dental prostheses”, Materials, Vol. 13, Issue 18, Page 3970, 2020.
  • 18. Corbani, K., Hardan, L., Skienhe, H., Özcan, M., Alharbi, N., Salameh, Z., “Effect of material thickness on the fracture resistance and failure pattern of 3D-printed composite crowns”, International Journal of Computerized Dentistry, Vol. 23, Issue 3, Pages 225–233, 2020.
  • 19. Ellakany, P., Fouda, S. M., Mahrous, A. A., AlGhamdi, M. A., Aly, N. M., “Influence of CAD/CAM milling and 3d-printing fabrication methods on the mechanical properties of 3-unit interim fixed dental prosthesis after thermo-mechanical aging process”, Polymers, Vol. 14, Issue 19, Page 4103, 2022.
  • 20. D’Arcangelo, C., Zarow, M., De Angelis, F., Vadini, M., Paolantonio, M., Giannoni, M., D'Amario, M., “Five-year retrospective clinical study of indirect composite restorations luted with a light-cured composite in posterior teeth”, Clinical Oral Investigation, Vol. 18, Pages 615–624, 2014.
  • 21. Zimmer, S., Göhlich, O., Rüttermann, S., Lang, H., Raab, W. H. M., Barthel, C. R., “Long-term survival of Cerec restorations: a 10-year study”, Operative Dentistry, Vol. 33, Issue 5, Pages 484–487, 2008.
  • 22. Rajamani, V. K., Reyal, S. S., Gowda, E. M., Shashidhar, M. P., “Comparative prospective clinical evaluation of computer aided design/computer aided manufacturing milled BioHPP PEEK inlays and Zirconia inlays”, The Journal of the Indian Prosthodontic Society, Vol. 21, Issue 3, Page 240, 2021.
  • 23. Sorensen, J. A., “A standardized method for determination of crown margin fidelity”, The Journal of Prosthetic Dentistry, Vol. 64, Issue 1, Pages 18–24, 1990.
  • 24. Grenade, C., Mainjot, A., Vanheusden, A., “Fit of single tooth zirconia copings: comparison between various manufacturing processes”, The Journal of Prosthetic Dentistry, Vol. 105, Issue 4, Pages 249–255, 2011.
  • 25. Molin, M., Karlsson, S., “The fit of gold inlays and three ceramic inlay systems: A clinical and in vitro study”, Acta Odontologica Scandinavica, Vol. 51, Issue 4, Pages 201–206, 1993.
  • 26. Falk, A., Vultvon Steyern, Fransson, P., H., Molin Thorén, M., “Reliability of the impression replica technique.”, International Journal of Prosthodontics, Vol. 28, Issue 2, 2015.
  • 27. Homsy, F. R., Özcan, M., Khoury, M., Majzoub, Z. A. K., “Marginal and internal fit of pressed lithium disilicate inlays fabricated with milling, 3D printing, and conventional technologies”, The Journal of Prosthetic Dentistry, Vol. 119, Issue 5, Pages 783–790, 2018.
  • 28. Sharma, A., Abraham, D., Gupita, A., Singh, A., Sharma, N., “Comparative evaluation of the marginal fit of inlays fabricated by conventional and digital impression techniques: A stereomicroscopic study”, Contemporary Clinical Dentistry, Vol. 11, Issue 3, Pages 237, 2020.
  • 29. Pompa, G., Di Carlo, S., De Angelis, F., Cristalli, M. P., Annibali, S., “Comparison of conventional methods and laser-assisted rapid prototyping for manufacturing fixed dental prostheses: an in vitro study”, Biomed Research International, Vol. 2015, 2015.
  • 30. Mai H.N., Lee K.B., Lee, D.H., “Fit of interim crowns fabricated using photopolymer-jetting 3D printing”, The Journal of Prosthetic Dentistry, Vol. 118, Issue 2, Pages 208–215, 2017.
  • 31. Al Wadei, M. H. D. et al., “Marginal Adaptation and Internal Fit of 3D-Printed Provisional Crowns and Fixed Dental Prosthesis Resins Compared to CAD/CAM-Milled and Conventional Provisional Resins: A Systematic Review and Meta-Analysis”, Coatings, Vol. 12, Issue 11, Page 1777, 2022.
  • 32. Gratton, D. G., Aquilino S. A., “Interim restorations”, Dental Clinics of North America., Vol. 48, Issue 2, Pages 487–497, 2004.
  • 33. McLean, J. W., “The estimation of cement film thickness by an in vivo technique”, British Dental Journal, Vol. 131, Issue 3, Pages 107–111, 1971.
  • 34. Boening, K. W., Wolf, B. H., Schmidt, A. E., Kästner, K., Walter, M. H., “Clinical fit of Procera AllCeram crowns”, The Journal of Prosthetic Dentistry, Vol. 84, Issue 4, Pages 419–424, 2000.

3B YAZICI SİSTEMİYLE ÜRETİLEN İNLEY RESTORASYONLARIN SİMAN ARALIKLARININ DEĞERLENDİRİLMESİ

Year 2023, , 505 - 512, 31.12.2023
https://doi.org/10.46519/ij3dptdi.1309683

Abstract

Bu çalışmanın hedefi, üç boyutlu (3B) yazıcı sistemi kullanılarak üretilen inley restorasyonlarının siman aralığı değerlerini araştırmaktır.Bu çalışma kapsamında, toplamda 60 adet typodont diş kullanıldı. Bu dişlerin yarısı (n=15), mesio-oklüzal (MO) kaviteler için, kalan yarısı (n=15) ise mesio-oklüzal-distal (MOD) kaviteler oluşturmak için kullanıldı. Bukkolingual genişlik 2,5-3mm ve pulpal derinlik 2mm olacak şekilde okluzal kaviteler hazırlandı. Proksimal inley kaviteler, basamak derinliği 1,5mm ve basamak kalınlığı 1 mm, bukkolingual genişliği 5 mm olarak tasarlandı. Kaviteler, intraoral dijital tarayıcı (TRIOS 3 Basic, Kopenhag, Danimarka) kullanılarak tarandı ve EXOCAD (Exocad Dental CAD 2.2, Darmstadt, Almanya) yazılımıyla inley restorasyon tasarımları yapıldı. 3B yazıcı (Phrozen sonic mini 4K SLA cihazı, Hsinchu, Tayvan) ile restorasyonların üretimi yapıldı. Restorasyonların siman aralığı değerlendirmek için silikon replika yöntemi kullanıldı ve kesitler stereomikroskop altında x10 büyütmede incelendi. Ölçümler üç farklı noktadan yapılıp, analiz için Adobe Photoshop programı kullanıldı. SPSS 22.0 programında Pairwise-Comparisons ve Kruskal-Wallis testleri ile verilerin analizi yapıldı (α<0,05). Alt ve üst molar dişlerde oluşturulan MO kavite preperasyonları ve 3B yazıcıyla üretilen inley restorasyonlar arasındaki siman aralığı değerlerinde herhangi bir fark tespit edilmedi (p=1,000). Alt ve üst molar dişlerde oluşturulan MOD kaviteler ve 3B yazıcıyla üretilen inley restorasyonlar arasında da siman aralığı değerlerinde bir fark saptanmadı (p=1,000). Bu araştırmanın sonuçlarına göre, 3B yazıcıyla üretilen MO inley restorasyonların klinik olarak uygun siman aralığına sahip olduğu ve 3B yazıcı ile üretim metodunun güvenilir bir alternatif olarak kullanılabileceği görülmektedir.

References

  • 1. Seo, D.,Yi, Y.,Roh, B.,“The effect of preparation designs on the marginal and internal gaps in Cerec3 partial ceramic crowns”, Journal of Dentistry, Vol. 37, Issue 5, Pages 374–382, 2009.
  • 2. Sener-Yamaner, I. D.,Sertgöz, A.,Toz-Akalın, T., Özcan, M., “Effect of material and fabrication technique on marginal fit and fracture resistance of adhesively luted inlays made of CAD/CAM ceramics and hybrid materials”, Journal of Adhesion Science and Technology, Vol. 31, Issue 1, Pages 55–70, 2017.
  • 3. Kim, D.Y., Kim, J.H., Kim, H.Y., Kim, W.C., “Comparison and evaluation of marginal and internal gaps in cobalt–chromium alloy copings fabricated using subtractive and additive manufacturing”, Journal of Prosthodontic Research, Vol. 62, Issue 1, Pages 56–64, 2018.
  • 4. Awad, A., Trenfield, S. J., Gaisford, S., Basit, A. W., “3D printed medicines: A new branch of digital healthcare” International Journal of Pharmaceutics, Vol. 548, Issue 1, Pages 586–596, 2018.
  • 5. Van Noort, R., “The future of dental devices is digital”, Dental Materials, Vol. 28, Issue 1, Pages. 3–12, 2012.
  • 6. Koch, G. K., Gallucci, G. O., Lee, S. J., “Accuracy in the digital workflow: From data acquisition to the digitally milled cast”, The Journal of Prosthetic Dentistry, Vol. 115, Issue. 6, Pages 749–754, 2016.
  • 7. Dawood, A., Marti, B. M., Sauret-Jackson, V., Darwood, A., “3D printing in dentistry”, British Dental Journal, Vol. 219, Issue 11, Pages 521–529, 2015.
  • 8. Alharbi, N., Osman, R., Wismeijer, D., “Effects of build direction on the mechanical properties of 3D-printed complete coverage interim dental restorations” The Journal of Prosthetic Dentistry, Vol. 115, Issue 6, Pages 760–767, 2016.
  • 9. Stansbury, J. W., Idacavage, M. J.,”3D printing with polymers: Challenges among expanding options and opportunities”, Dental Materials, Vol. 32, Issue 1, Pages 54–64, 2016.
  • 10. Sun J., Zhang, F., “The application of rapid prototyping in prosthodontics”, Journal of Prosthodontics: Implant, Esthetic and Reconstructive Dentistry, Vol. 21, Issue 8, Pages 641–644, 2012.
  • 11. Abduo, J., Lyons, K., Bennamoun, M., “Trends in computer-aided manufacturing in prosthodontics: a review of the available streams”, International Journal of Dentistry, Vol. 2014, 2014.
  • 12. Lee, W.S., Lee, D.H., Lee, K.B., “Evaluation of internal fit of interim crown fabricated with CAD/CAM milling and 3D printing system”, The Journal of Advanced Prosthodontics, Vol. 9, Issue 4, Pages 265–270, 2017.
  • 13. Peng, C.C., Chung, K.H., Yau, H.T., “Assessment of the internal fit and marginal integrity of interim crowns made by different manufacturing methods”, The Journal of Prosthetic Dentistry, Vol. 123, Issue 3, Pages 514–522, 2020.
  • 14. Park, J.Y., Bae, S.Y., . Lee, J.J, Kim J.H., Kim, H.Y., Kim, W.C., “Evaluation of the marginal and internal gaps of three different dental prostheses: comparison of the silicone replica technique and three-dimensional superimposition analysis”, The Journal of Advanced Prosthodontics., Vol. 9, Issue 3, Pages 159–169, 2017.
  • 15. Laurent, M., Scheer, P., Dejou, J., Laborde, G., “Clinical evaluation of the marginal fit of cast crowns–validation of the silicone replica method”, Journal of Oral Rehabilitation, Vol. 35, Issue 2, Pages 116–122, 2008.
  • 16. Kessler, A., Hickel, R., Reymus, M., “3D printing in dentistry—State of the art”, Operative Dentistry,Vol. 45, Issue 1, Pages 30–40, 2020.
  • 17. Park, S.M., Park, J.M., Kim, S.K., Heo, S.J., Koak J.Y., “Flexural strength of 3D-printing resin materials for provisional fixed dental prostheses”, Materials, Vol. 13, Issue 18, Page 3970, 2020.
  • 18. Corbani, K., Hardan, L., Skienhe, H., Özcan, M., Alharbi, N., Salameh, Z., “Effect of material thickness on the fracture resistance and failure pattern of 3D-printed composite crowns”, International Journal of Computerized Dentistry, Vol. 23, Issue 3, Pages 225–233, 2020.
  • 19. Ellakany, P., Fouda, S. M., Mahrous, A. A., AlGhamdi, M. A., Aly, N. M., “Influence of CAD/CAM milling and 3d-printing fabrication methods on the mechanical properties of 3-unit interim fixed dental prosthesis after thermo-mechanical aging process”, Polymers, Vol. 14, Issue 19, Page 4103, 2022.
  • 20. D’Arcangelo, C., Zarow, M., De Angelis, F., Vadini, M., Paolantonio, M., Giannoni, M., D'Amario, M., “Five-year retrospective clinical study of indirect composite restorations luted with a light-cured composite in posterior teeth”, Clinical Oral Investigation, Vol. 18, Pages 615–624, 2014.
  • 21. Zimmer, S., Göhlich, O., Rüttermann, S., Lang, H., Raab, W. H. M., Barthel, C. R., “Long-term survival of Cerec restorations: a 10-year study”, Operative Dentistry, Vol. 33, Issue 5, Pages 484–487, 2008.
  • 22. Rajamani, V. K., Reyal, S. S., Gowda, E. M., Shashidhar, M. P., “Comparative prospective clinical evaluation of computer aided design/computer aided manufacturing milled BioHPP PEEK inlays and Zirconia inlays”, The Journal of the Indian Prosthodontic Society, Vol. 21, Issue 3, Page 240, 2021.
  • 23. Sorensen, J. A., “A standardized method for determination of crown margin fidelity”, The Journal of Prosthetic Dentistry, Vol. 64, Issue 1, Pages 18–24, 1990.
  • 24. Grenade, C., Mainjot, A., Vanheusden, A., “Fit of single tooth zirconia copings: comparison between various manufacturing processes”, The Journal of Prosthetic Dentistry, Vol. 105, Issue 4, Pages 249–255, 2011.
  • 25. Molin, M., Karlsson, S., “The fit of gold inlays and three ceramic inlay systems: A clinical and in vitro study”, Acta Odontologica Scandinavica, Vol. 51, Issue 4, Pages 201–206, 1993.
  • 26. Falk, A., Vultvon Steyern, Fransson, P., H., Molin Thorén, M., “Reliability of the impression replica technique.”, International Journal of Prosthodontics, Vol. 28, Issue 2, 2015.
  • 27. Homsy, F. R., Özcan, M., Khoury, M., Majzoub, Z. A. K., “Marginal and internal fit of pressed lithium disilicate inlays fabricated with milling, 3D printing, and conventional technologies”, The Journal of Prosthetic Dentistry, Vol. 119, Issue 5, Pages 783–790, 2018.
  • 28. Sharma, A., Abraham, D., Gupita, A., Singh, A., Sharma, N., “Comparative evaluation of the marginal fit of inlays fabricated by conventional and digital impression techniques: A stereomicroscopic study”, Contemporary Clinical Dentistry, Vol. 11, Issue 3, Pages 237, 2020.
  • 29. Pompa, G., Di Carlo, S., De Angelis, F., Cristalli, M. P., Annibali, S., “Comparison of conventional methods and laser-assisted rapid prototyping for manufacturing fixed dental prostheses: an in vitro study”, Biomed Research International, Vol. 2015, 2015.
  • 30. Mai H.N., Lee K.B., Lee, D.H., “Fit of interim crowns fabricated using photopolymer-jetting 3D printing”, The Journal of Prosthetic Dentistry, Vol. 118, Issue 2, Pages 208–215, 2017.
  • 31. Al Wadei, M. H. D. et al., “Marginal Adaptation and Internal Fit of 3D-Printed Provisional Crowns and Fixed Dental Prosthesis Resins Compared to CAD/CAM-Milled and Conventional Provisional Resins: A Systematic Review and Meta-Analysis”, Coatings, Vol. 12, Issue 11, Page 1777, 2022.
  • 32. Gratton, D. G., Aquilino S. A., “Interim restorations”, Dental Clinics of North America., Vol. 48, Issue 2, Pages 487–497, 2004.
  • 33. McLean, J. W., “The estimation of cement film thickness by an in vivo technique”, British Dental Journal, Vol. 131, Issue 3, Pages 107–111, 1971.
  • 34. Boening, K. W., Wolf, B. H., Schmidt, A. E., Kästner, K., Walter, M. H., “Clinical fit of Procera AllCeram crowns”, The Journal of Prosthetic Dentistry, Vol. 84, Issue 4, Pages 419–424, 2000.
There are 34 citations in total.

Details

Primary Language Turkish
Subjects Manufacturing and Industrial Engineering (Other)
Journal Section Research Article
Authors

Elif Yiğit 0000-0003-3256-062X

Hasibe Sevilay Bahadır 0000-0001-8577-4408

Alican Bulut 0000-0002-1586-7403

Early Pub Date December 25, 2023
Publication Date December 31, 2023
Submission Date June 4, 2023
Published in Issue Year 2023

Cite

APA Yiğit, E., Bahadır, H. S., & Bulut, A. (2023). 3B YAZICI SİSTEMİYLE ÜRETİLEN İNLEY RESTORASYONLARIN SİMAN ARALIKLARININ DEĞERLENDİRİLMESİ. International Journal of 3D Printing Technologies and Digital Industry, 7(3), 505-512. https://doi.org/10.46519/ij3dptdi.1309683
AMA Yiğit E, Bahadır HS, Bulut A. 3B YAZICI SİSTEMİYLE ÜRETİLEN İNLEY RESTORASYONLARIN SİMAN ARALIKLARININ DEĞERLENDİRİLMESİ. IJ3DPTDI. December 2023;7(3):505-512. doi:10.46519/ij3dptdi.1309683
Chicago Yiğit, Elif, Hasibe Sevilay Bahadır, and Alican Bulut. “3B YAZICI SİSTEMİYLE ÜRETİLEN İNLEY RESTORASYONLARIN SİMAN ARALIKLARININ DEĞERLENDİRİLMESİ”. International Journal of 3D Printing Technologies and Digital Industry 7, no. 3 (December 2023): 505-12. https://doi.org/10.46519/ij3dptdi.1309683.
EndNote Yiğit E, Bahadır HS, Bulut A (December 1, 2023) 3B YAZICI SİSTEMİYLE ÜRETİLEN İNLEY RESTORASYONLARIN SİMAN ARALIKLARININ DEĞERLENDİRİLMESİ. International Journal of 3D Printing Technologies and Digital Industry 7 3 505–512.
IEEE E. Yiğit, H. S. Bahadır, and A. Bulut, “3B YAZICI SİSTEMİYLE ÜRETİLEN İNLEY RESTORASYONLARIN SİMAN ARALIKLARININ DEĞERLENDİRİLMESİ”, IJ3DPTDI, vol. 7, no. 3, pp. 505–512, 2023, doi: 10.46519/ij3dptdi.1309683.
ISNAD Yiğit, Elif et al. “3B YAZICI SİSTEMİYLE ÜRETİLEN İNLEY RESTORASYONLARIN SİMAN ARALIKLARININ DEĞERLENDİRİLMESİ”. International Journal of 3D Printing Technologies and Digital Industry 7/3 (December 2023), 505-512. https://doi.org/10.46519/ij3dptdi.1309683.
JAMA Yiğit E, Bahadır HS, Bulut A. 3B YAZICI SİSTEMİYLE ÜRETİLEN İNLEY RESTORASYONLARIN SİMAN ARALIKLARININ DEĞERLENDİRİLMESİ. IJ3DPTDI. 2023;7:505–512.
MLA Yiğit, Elif et al. “3B YAZICI SİSTEMİYLE ÜRETİLEN İNLEY RESTORASYONLARIN SİMAN ARALIKLARININ DEĞERLENDİRİLMESİ”. International Journal of 3D Printing Technologies and Digital Industry, vol. 7, no. 3, 2023, pp. 505-12, doi:10.46519/ij3dptdi.1309683.
Vancouver Yiğit E, Bahadır HS, Bulut A. 3B YAZICI SİSTEMİYLE ÜRETİLEN İNLEY RESTORASYONLARIN SİMAN ARALIKLARININ DEĞERLENDİRİLMESİ. IJ3DPTDI. 2023;7(3):505-12.

 download

Uluslararası 3B Yazıcı Teknolojileri ve Dijital Endüstri Dergisi Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.