Research Article
BibTex RIS Cite

ELECTROCHEMICAL APPLICATION OF SCREEN PRINTED ELECTRODE-LIKE SYSTEM MADE WITH A THREE-DIMENSIONAL PRINTER

Year 2024, , 80 - 91, 30.04.2024
https://doi.org/10.46519/ij3dptdi.1324695

Abstract

The use of three-dimensional printers in the production of electrodes and electrode systems used in electrochemical sensors and biosensors provides significant advantages. Being able to produce with low cost, which is one of these advantages, has been the driving force in the increasing number of studies in this field in recent years. Surface-printed electrodes, most of which are disposable, where electrochemical measurements can be performed, are used in many sensor/biosensor systems. The main goal of this study is to demonstrate the producibility of alternative electrodes, which have a similar design to surface-printed electrodes and work with a similar logic, with three-dimensional printers. The pencil graphite electrode used as the electrode material was used as a working, reference, and counter electrode in the produced system due to its widespread availability and low cost. Cost reduction and accessibility were also considered in terms of three-dimensional printers and FDM type printer was preferred. The screen printed electrode-like system obtained using an FDM-type printer has been successfully used in the electrochemical determination of paracetamol. In this system, in which a 2B pen tip with a thickness of 0.9 mm is used as the working, counter and reference electrode, an oxidation peak of 0.43 V was obtained in pH 7.0 phosphate buffer solution containing 4.0 mM paracetamol by using the cyclic voltammetry method. The system was also tested under conditions where Ag/AgCl was used as the reference electrode and Pt wire was used as the counter electrode. The results showed that the oxidation current values obtained for paracetamol were very close to each other.

Project Number

17.MÜH.16

References

  • 1. Bahadır, E.B. and Sezgintürk, M.K., “Applications of commercial biosensors in clinical, food, environmental, and biothreat/biowarfare analyses”, Analytical Biochemistry, Vol. 478, Pages 107-120, 2015.
  • 2. Kurbanoğlu, S., Özkan, S.A. and Merkoçi, A. “Nanomaterials-based enzyme electrochemical biosensors operating through inhibition for biosensing applications”, Biosensors and Bioelectronics, Vol. 89, Pages 886–898, 2017.
  • 3. Akbari-Javar, H., Garkani-Nejad, Z., Dehghannoudeh, G. and Mahmoudi-Moghaddam, H., “Development of a new electrochemical DNA biosensor based on Eu3+−doped NiO for determination of amsacrine as an anti-cancer drug: Electrochemical, spectroscopic and docking studies”, Analytica Chimica Acta, Vol. 1133, Pages 48-57, 2020.
  • 4. Narita, F., Wang, Z., Kurita, H., Li, Z., Shi, Y. Jia, Y. and Soutis, C.A., “Review of piezoelectric and magnetostrictive biosensor materials for detection of COVID-19 and other viruses”, Advanced Materials, Vol.33, Issue 1, Article number 2005448, 2021.
  • 5. Ramanathan, K. and Danielsson, B., “Principles and applications of thermal biosensors”, Biosensors and Bioelectronics, Vol. 16, Issue 6, Pages 417-423, 2001.
  • 6. Seo, G., Lee, G., Kim, M.J. Baek, S.-H., Choi, M., Ku, K.B., Lee, C.-S., Jun, S., Park, D., Kim, H.G., Kim, S.-J. and Lee, J.-O., “Rapid detection of COVID-19 causative virus (SARS-CoV-2) in human nasopharyngeal swab specimens using field-effect transistor-based biosensor”, ACS Nano, Vol. 14, Issue 4, Pages 5135-5142, 2020.
  • 7. Madurai, G., Sasidharan, M. and Ganesan, V., “Electrochemical sensor and biosensor platforms based on advanced nanomaterials for biological and biomedical applications”, Biosensors and Bioelectronics, Vol. 103, Pages 113-129, 2018.
  • 8. Arduini, F., Micheli, L., Moscone, D., Moscone D., Palleschi, G., Piermarini, S., Ricci, F. and Volpe, G., “Electrochemical biosensors based on nanomodified screen-printed electrodes: Recent applications in clinical analysis”, TrAC-Trends in Analytical Chemistry, Vol. 79, Pages 114-126, 2016.
  • 9. Pingarrón, J.M., Yáñez-Sedeño, P. and González-Cortés, A. “Gold nanoparticle-based electrochemical biosensors”, Electrochimica Acta, Vol. 53, Issue 19, Pages 5848-58661, 2008.
  • 10. Kannappan, S., Prabakaran, L., Nesakumar, N., Babu, K.J., Kulandaisamy, A.J. and Rayappan, A.B.B., “Design and development of a non-enzymatic electrochemical biosensor for the detection of glutathione”, Electroanalysis, Vol. 35, Issue 1, e202100650, 2023.
  • 11. Kour, R., Arya, S., Young, S.-J., Gupta, V., Bandhoria, P. and Khosla, A., “Recent advances in carbon nanomaterials as electrochemical biosensors”, Journal of the Electrochemical Society, Vol. 167, Issue 32020, Article number 037555, 2020.
  • 12. Lin, Y., Lin Y.,Lu, F. and Wang, J., “Disposable carbon nanotube modified screen-printed biosensor for amperometric detection of organophosphorus pesticides and nerve agents”, Electroanalysis, Vol. 16, Issue 1-2, Pages 145-149, 2004.
  • 13. Palenzuela, C.L.M. and Pumera, M., “(Bio)Analytical chemistry enabled by 3D printing: Sensors and biosensors”, TrAC - Trends in Analytical Chemistry, Vol. 103, Pages 110-118, 2018.
  • 14. Marzo, A.M.L., Mayorga-Martinez, C.C. and Pumera, M., “3D-printed graphene direct electron transfer enzyme biosensor”, Biosensors and Bioelectronics, Vol. 1511, Article number 111980, 2020.
  • 15. Elbadawi, M., Ong, J.J., Pollard, T.D., Gaisford, S. and Basit, A.W., “Additive manufacturable materials for electrochemical biosensor electrodes”, Advanced Functional Materials, Vol. 31, Article number 2006407, 2021.
  • 16. Bonyár, A., Sántha, H., Ring, B., Varga, M., Kovács, J. G. and Harsányi, G.,” 3D rapid prototyping technology (RPT) as a powerful tool in microfluidic development”, Procedia Engineering, Vol. 5, 291-294, 2010.
  • 17. Roda, A., Guardigli, M., Calabria, D., Calabretta, M. M., Cevenini, L. and Michelini, E., “A 3D-printed device for a smartphone-based chemiluminescence biosensor for lactate in oral fluid and sweat”, Analyst, Vol. 139, Issue 24, Pages 6494-6501, 2014.
  • 18. Gowers, S. A., Curto, V. F., Seneci, C. A., Wang, C., Anastasova, S., Vadgama, P., Yang, G.-Z. and Boutelle, M. G. , “3D printed microfluidic device with integrated biosensors for online analysis of subcutaneous human microdialysate”. Analytical Chemistry, Vol. 87, Issue 15, Pages 7763-7770, 2015.
  • 19. Dias, A. A., Cardoso, T. M., Cardoso, R. M., Duarte, L. C., Muñoz, R. A., Richter, E. M. and Coltro, W. K., “Paper-based enzymatic reactors for batch injection analysis of glucose on 3D printed cell coupled with amperometric detection”, Sensors and Actuators B: Chemical, Vol. 226, Pages 196-203, 2016. 20. Annu, Sharma, S. Jain, R. and Antony Nitin Raja A.N. “Review—Pencil Graphite Electrode: An Emerging Sensing Material”, Journal of The Electrochemical Society, Vol. 167 Article number 037501, 2020.
  • 21. Pishko, M. V., Katakis I., Lindquist S.E., Heller, A. and Degani Y. “Electrical Communication Between Graphite Electrodes and Glucose Oxidase/Redox Polymer Complexes”, Molecular Crystals and Liquid Crystals Incorporating Nonlinear Optics, Vol. 190, Issue 1, Pages 221-249, 1990.
  • 22. Ishida, N. and Saito, K., “Pencil lead and manufacturing method of the same. US Patent, No 4017451, 1977.
  • 23. Down, M.P. Foster, C.W. Ji, X. and Banks, C.E., “Pencil drawn paper based supercapacitors”, RSC Advances, Vol. 6, Issue 84, Pages 81130-81141, 2016.
  • 24. Tavares, P.H.C.P., Barbeira, P.J.S., “Influence of pencil lead hardness on voltammetric response of graphite reinforcement carbon electrodes”. Journal of Applied Electrochemistry, Vol. 38, Pages 827-832, 2008.
  • 25. Torrinha, A., Amorim, C.G., Montenegro, M.C.B.S.M. and Araújo, A.N., “Biosensing based on pencil graphite electrodes”, Talanta, Vol. 190, Issue 1, Pages 235-247, 2018.
  • 26. Foster, C.H., Brownson, D.A.C., Ruas de Souza, A.P., Bernalte, E., Iniesta, J., Bertotti, M. and Banks, C.E., “Pencil it in: pencil drawn electrochemical sensing platforms”, Analyst, Vol. 141, Pages 4055-4064, 2016.
  • 27. Navratil. R., Kotzianova, A., Halouzka, V., Opletal, T., Triskova, I., Trnkova, L. And Hrbac, J., “Polymer lead pencil graphite as electrode material: Voltammetric, XPS and Raman study”, Journal of Electroanalytical Chemistry, Vol. 783, Issue15, Pages 152-160, 2016.
  • 28. Kariuki, J.K., “An Electrochemical and Spectroscopic Characterization of Pencil Graphite Electrodes” Journal of The Electrochemical Society, Vol. 159, Issue 9, H747, 2012.
  • 29. Masawat, P., Liawruangrath, S., Vaneesorn, Y. and Liawruangrath, B., “Design and fabrication of a low-cost flow-through cell for the determination of acetaminophen in pharmaceutical formulations by flow injection cyclic voltammetry”, Talanta, Vol. 58, Issue 6, Pages 1221-1234, 2002.
  • 30. Buratti, S., Scampicchio, M., Giovanelli, G. and Mannino, S., “A low-cost and low-tech electrochemical flow system for the evaluation of total phenolic content and antioxidant power of tea infusions”, Talanta, Vol. 75, Issue 1, Pages 312-316, 2008.
  • 31. Ozge, K., Hurmus, G., Semih, G, and Sahin, Y, “Highly sensitive electrochemical determination of dopamine with an overoxidized polypyrrole nanofiber pencil graphite electrode”, International Journal of Electrochemical Science, Vol. 12, Issue 7, Pages 6428-644, 2017.
  • 32. Özbek, A. and Özcan, L. “Voltammetric performance of nanofiber structured over-oxidized poly (3, 4-ethylenedioxythiophene) modified pencil graphite electrodes for dobutamine sensing”, Journal of the Turkish Chemical Society Section A: Chemistry, Vol. 11, Issue 1, pages 55-70, 2024.
  • 33. Ayaz, S., Karakaya, S., Emir, G., Uşaklıgil, N., Giray Dilgin, D., Dilgin, Y., “Flow-Injection Amperometric Determination of Glucose Using Nickel Oxide-Cobalt (II,III) Oxide and Nickel Oxide-Copper Nanoparticle Modified Pencil Graphite Electrodes”, Analytical Letters, Vol. 55, Issue 13, Pages 2046 – 2057, 2022.
  • 34. Yazar, S., Arvas, M.B., Polat, B. aOzeroglu, C., “Green Synthesis of Copper Oxide Nanoparticle Decorated Polypyrrole-Chitosan on Pencil Graphite Electrode for Enzyme-Free Glucose Sensors”, ECS Journal of Solid State Science and Technology, Vol. 12, Issue 7, Article number 077002, 2023.
  • 35. Özcan, L., Altuntas, M., Büyüksağiş, A., Türk H. and Yurdakal, S., “Electrochemical determination of bisphenol A with pencil graphite electrodes modified with Co(II), Ni(II), Cu(II) and Fe(II) phthalocyaninetetrasulfonates”, Analytical Sciences, Vol. 32, Issue 8, Pages 881-886, 2016.
  • 36. Dilgin, D.G., Ertek, B. And Dilgin, Y., “A low-cost, fast, disposable and sensitive biosensor study: flow injection analysis of glucose at poly-methylene blue-modified pencil graphite electrode” Journal of the Iranian Chemical Society, Vol. 15, Issue 6, Pages 1355 – 13631, 2018.
  • 37. Özcan L., Cu(II), Ni(II), Co(II) ve Fe(II) “Metaloftalosiyanintetrasülfonat Modifiye Kalem Ucu Elektrotlar ile Elektrokimyasal Dopamin Tayini”,Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, Cilt 19, Sayı 2, Sayfa 291-300, 2019.
  • 38. Lakhera P., Chaudhary V., Jha A., Singh R., Kush P., Kush P. and Kumar P., “Recent developments and fabrication of the different electrochemical biosensors based on modified screen printed and glassy carbon electrodes for the early diagnosis of diverse breast cancer biomarkers”, Materials Today Chemistry, Vol. 26, Article Number 101129, 2022.
  • 39. Taleat, Z., Khoshroo, A. and Mazloum-Ardakani, M., “Screen-printed electrodes for biosensing: A review (2008-2013)”, Microchim. Acta. Vol. 181, Pages 865–89, 2014.
  • 40. Taufiq, S., Waqar, M., Sharif, M.N. and Abbas, S.R., “Towards portable rapid TB biosensor: detecting mycobacterium tuberculosis in raw sputum samples using functionalized screen printed electrodes”, Bioelectrochemistry, Vol. 150, Article number 108353, 2023.
  • 41. Scognamiglio, V. Pezzotti, I., Pezzotti, G., Cano, J., Manfredonia, I., Buonasera, K., Rodio, G. and Giardi, M.T. “A new embedded biosensor platform based on micro-electrodes array (MEA) technology”, Sensors and Actuators, B: Chemical, Vol. 176, Pages 275-283, 2013.
  • 42. Juska, V.B. and Pemble, M., “A dual-enzyme, micro-band array biosensor based on the electrodeposition of carbon nanotubes embedded in chitosan and nanostructured Au-foams on microfabricated gold band electrodes”, Analyst, Vol. 145, Issue 2, Pages 402-414, 2020.
  • 43. “Screen-printed electrodes” https://www.dropsens.com/en/screen_printed_electrodes_pag.html, Temmuz 17, 2023.
  • 44. Mistry, K.K., Layek, K., Mahapatra, A., RoyChaudhurib, C. and Saha, H., “A review on amperometric-type immunosensors based on screen-printed electrodes”, Analyst, Vol. 139, Pages 2289-2311, 2014.
  • 45. Cano, J.B., Buonasera, K. and Pezzotti, G., “Transduction methods used on biosensors: amperometry and fluorescence”, Revista Facultad de Ingenieria de Antioquia, Vol. 72, Pages 104–115, 2014.
  • 46. Rackus, D.G., Shamsi, M.H. and Wheeler, A.R., “Electrochemistry, biosensors and microfluidics: a convergence of fields”, Chemical Society Review, Vol. 44, Pages 5320–5340, 2015. 47. Neves, M.M.P.S., González-García, M.B., Hernández-Santos, D. and Fanjul-Bolado, P., “Screen-Printed electrochemical 96-well plate: A high-throughput platform for multiple analytical applications”, Electroanalysis, Vol. 26, Isuue 12, Pages 2764-2772, 2014.
  • 48. Tseng, H.-Y., Lizama, J.H., Shen, Y.-W. and Chen, C.-J., “The pursuit of further miniaturization of screen printed micro paper-based analytical devices utilizing controlled penetration towards optimized channel patterning”, Scientific Reports, Vol. 11, Issue 1, Article number 21496, 2021.
  • 49. Berman, B., “3-D printing: The new industrial revolution”. Business Horizons, Vol 55, Issue 2, 155-162, 2012.
  • 50. Jones, R., Haufe, P., Sells, E., Iravani, P., Olliver, V., Palmer, C. and Bowyer, A., “RepRap-the replicating rapid prototyper”. Robotica, Vol. 29, Issue 01, Pages 177-191, 2011.
  • 51. Bilton, N., “Shapeways, having printed 1 million objects, secures more financing”, The New York Times, 2012.
  • 52. Rohaizada, N., Mayorga-Martinez, C.C., Novotny, F., Webster, R.D. and Pumera, M. 2019, “3D-printed Ag/AgCl pseudo-reference electrodes”, Electrochemistry Communications, Vol. 103, Pages 104-108, 2019.
  • 53. Glavan, A.C., Christodouleas, D.C., Mosadegh, B., Yu, H. D., Smith, B.S., Lessing, J., Teresa Fernandez-Abedul, ́M. and Whitesides, G.M., “Folding analytical devices for electrochemical ELISA in hydrophobic RH paper”, Analytical Chemistry, Vol. 86, Pages 11999−12007, 2014.
  • 54. Torrinha, A., Amorim, C.G., Maria, Montenegro, C.B.S.M. and Araújo, A.N., “Biosensing based on pencil graphite electrodes”, Talanta, Vol. 190, Issue 1, Pages 235-247, 2018.
  • 55. Katseli, V., Economou, A. and Kokkinos, C., “Single-step fabrication of an integrated 3D-printed device for electrochemical sensing applications”, Electrochemistry Communications, Vol. 103, Pages 100-103, 2019.
  • 56. Salve, M., Mandal, A., Amreen, K., Pattnaik, P.K. and Goel, S., “Greenly synthesized silver nanoparticles for supercapacitor and electrochemical sensing applications in a 3D printed microfluidic platform”, Microchemical Journal, Vol. 157, article number 104973, 2020.

ÜÇ BOYUTLU YAZICIYLA ÜRETİLMİŞ YÜZEY BASKILI ELEKTROT BENZERİ SİSTEMİN ELEKTROKİMYASAL UYGULAMASI

Year 2024, , 80 - 91, 30.04.2024
https://doi.org/10.46519/ij3dptdi.1324695

Abstract

Elektrokimyasal sensör ve biyosensörlerde kullanılan elektrotların ve elektrot sistemlerinin yapılmasında üç boyutlu yazıcıların kullanılması önemli avantajlar sağlamaktadır. Bu avantajlardan biri olan düşük maliyet ile üretim yapılabilmesi, son yıllarda bu alandaki çalışmaların giderek artmasında itici güç olmuştur. Elektrokimyasal ölçümlerin gerçekleştirilebildiği ve çoğu tek kullanımlık olan yüzey baskılı elektrotlar pek çok sensör/biyosensör sisteminde kullanılmaktadır. Yüzey baskılı elektrotlara benzer bir tasarıma sahip ve benzer bir mantıkla çalışan alternatif elektrotların üç boyutlu yazıcılarla üretilebilirliğinin gösterilmesi bu çalışmanın ana hedefidir. Elektrot malzemesi olarak kullanılan kalem ucu grafit elektrot yaygın bulunabilirliği ve düşük maliyeti nedeniyle üretilen sistemde çalışma, referans ve karşıt elektrot olarak kullanılmıştır. Maliyetin düşürülmesi ve ulaşılabilirlik üç boyutlu yazıcılar açısından da göz önünde bulundurulmuş ve FDM tipi yazıcı tercih edilmiştir. FDM tipi yazıcı kullanılarak elde edilen yüzey baskılı elektrot benzeri sistem parasetamolün elektrokimyasal tayinlerinde başarıyla kullanılmıştır. Çalışma, karşıt ve referans elektrot olarak 0,9 mm kalınlığındaki 2B kalem ucunun kullanıldığı bu sistemde dönüşümlü voltametri yöntemi kullanılarak 4,0 mM parasetamol içeren pH 7,0 fosfat tamponu çözeltisinde 0,43 V değerinde yükseltgenme piki elde edilmiştir. Sistem aynı zamanda referans elektrot olarak Ag/AgCl ve karşıt elektrot olarak Pt telin kullanıldığı şartlarda denenmiştir. Sonuçlar parasetamol için elde edilen yükseltgenme akım değerinin birbirine çok yakın olduğunu göstermiştir.

Supporting Institution

Afyon Kocatepe Üniversitesi Bilimsel Araştırmalar Koordinasyon Birimi

Project Number

17.MÜH.16

Thanks

17.MÜH.16 nolu proje ile bu çalışmayı destekleyen Afyon Kocatepe Üniversitesi Bilimsel Araştırmalar Koordinasyon Birimine teşekkür ederiz.

References

  • 1. Bahadır, E.B. and Sezgintürk, M.K., “Applications of commercial biosensors in clinical, food, environmental, and biothreat/biowarfare analyses”, Analytical Biochemistry, Vol. 478, Pages 107-120, 2015.
  • 2. Kurbanoğlu, S., Özkan, S.A. and Merkoçi, A. “Nanomaterials-based enzyme electrochemical biosensors operating through inhibition for biosensing applications”, Biosensors and Bioelectronics, Vol. 89, Pages 886–898, 2017.
  • 3. Akbari-Javar, H., Garkani-Nejad, Z., Dehghannoudeh, G. and Mahmoudi-Moghaddam, H., “Development of a new electrochemical DNA biosensor based on Eu3+−doped NiO for determination of amsacrine as an anti-cancer drug: Electrochemical, spectroscopic and docking studies”, Analytica Chimica Acta, Vol. 1133, Pages 48-57, 2020.
  • 4. Narita, F., Wang, Z., Kurita, H., Li, Z., Shi, Y. Jia, Y. and Soutis, C.A., “Review of piezoelectric and magnetostrictive biosensor materials for detection of COVID-19 and other viruses”, Advanced Materials, Vol.33, Issue 1, Article number 2005448, 2021.
  • 5. Ramanathan, K. and Danielsson, B., “Principles and applications of thermal biosensors”, Biosensors and Bioelectronics, Vol. 16, Issue 6, Pages 417-423, 2001.
  • 6. Seo, G., Lee, G., Kim, M.J. Baek, S.-H., Choi, M., Ku, K.B., Lee, C.-S., Jun, S., Park, D., Kim, H.G., Kim, S.-J. and Lee, J.-O., “Rapid detection of COVID-19 causative virus (SARS-CoV-2) in human nasopharyngeal swab specimens using field-effect transistor-based biosensor”, ACS Nano, Vol. 14, Issue 4, Pages 5135-5142, 2020.
  • 7. Madurai, G., Sasidharan, M. and Ganesan, V., “Electrochemical sensor and biosensor platforms based on advanced nanomaterials for biological and biomedical applications”, Biosensors and Bioelectronics, Vol. 103, Pages 113-129, 2018.
  • 8. Arduini, F., Micheli, L., Moscone, D., Moscone D., Palleschi, G., Piermarini, S., Ricci, F. and Volpe, G., “Electrochemical biosensors based on nanomodified screen-printed electrodes: Recent applications in clinical analysis”, TrAC-Trends in Analytical Chemistry, Vol. 79, Pages 114-126, 2016.
  • 9. Pingarrón, J.M., Yáñez-Sedeño, P. and González-Cortés, A. “Gold nanoparticle-based electrochemical biosensors”, Electrochimica Acta, Vol. 53, Issue 19, Pages 5848-58661, 2008.
  • 10. Kannappan, S., Prabakaran, L., Nesakumar, N., Babu, K.J., Kulandaisamy, A.J. and Rayappan, A.B.B., “Design and development of a non-enzymatic electrochemical biosensor for the detection of glutathione”, Electroanalysis, Vol. 35, Issue 1, e202100650, 2023.
  • 11. Kour, R., Arya, S., Young, S.-J., Gupta, V., Bandhoria, P. and Khosla, A., “Recent advances in carbon nanomaterials as electrochemical biosensors”, Journal of the Electrochemical Society, Vol. 167, Issue 32020, Article number 037555, 2020.
  • 12. Lin, Y., Lin Y.,Lu, F. and Wang, J., “Disposable carbon nanotube modified screen-printed biosensor for amperometric detection of organophosphorus pesticides and nerve agents”, Electroanalysis, Vol. 16, Issue 1-2, Pages 145-149, 2004.
  • 13. Palenzuela, C.L.M. and Pumera, M., “(Bio)Analytical chemistry enabled by 3D printing: Sensors and biosensors”, TrAC - Trends in Analytical Chemistry, Vol. 103, Pages 110-118, 2018.
  • 14. Marzo, A.M.L., Mayorga-Martinez, C.C. and Pumera, M., “3D-printed graphene direct electron transfer enzyme biosensor”, Biosensors and Bioelectronics, Vol. 1511, Article number 111980, 2020.
  • 15. Elbadawi, M., Ong, J.J., Pollard, T.D., Gaisford, S. and Basit, A.W., “Additive manufacturable materials for electrochemical biosensor electrodes”, Advanced Functional Materials, Vol. 31, Article number 2006407, 2021.
  • 16. Bonyár, A., Sántha, H., Ring, B., Varga, M., Kovács, J. G. and Harsányi, G.,” 3D rapid prototyping technology (RPT) as a powerful tool in microfluidic development”, Procedia Engineering, Vol. 5, 291-294, 2010.
  • 17. Roda, A., Guardigli, M., Calabria, D., Calabretta, M. M., Cevenini, L. and Michelini, E., “A 3D-printed device for a smartphone-based chemiluminescence biosensor for lactate in oral fluid and sweat”, Analyst, Vol. 139, Issue 24, Pages 6494-6501, 2014.
  • 18. Gowers, S. A., Curto, V. F., Seneci, C. A., Wang, C., Anastasova, S., Vadgama, P., Yang, G.-Z. and Boutelle, M. G. , “3D printed microfluidic device with integrated biosensors for online analysis of subcutaneous human microdialysate”. Analytical Chemistry, Vol. 87, Issue 15, Pages 7763-7770, 2015.
  • 19. Dias, A. A., Cardoso, T. M., Cardoso, R. M., Duarte, L. C., Muñoz, R. A., Richter, E. M. and Coltro, W. K., “Paper-based enzymatic reactors for batch injection analysis of glucose on 3D printed cell coupled with amperometric detection”, Sensors and Actuators B: Chemical, Vol. 226, Pages 196-203, 2016. 20. Annu, Sharma, S. Jain, R. and Antony Nitin Raja A.N. “Review—Pencil Graphite Electrode: An Emerging Sensing Material”, Journal of The Electrochemical Society, Vol. 167 Article number 037501, 2020.
  • 21. Pishko, M. V., Katakis I., Lindquist S.E., Heller, A. and Degani Y. “Electrical Communication Between Graphite Electrodes and Glucose Oxidase/Redox Polymer Complexes”, Molecular Crystals and Liquid Crystals Incorporating Nonlinear Optics, Vol. 190, Issue 1, Pages 221-249, 1990.
  • 22. Ishida, N. and Saito, K., “Pencil lead and manufacturing method of the same. US Patent, No 4017451, 1977.
  • 23. Down, M.P. Foster, C.W. Ji, X. and Banks, C.E., “Pencil drawn paper based supercapacitors”, RSC Advances, Vol. 6, Issue 84, Pages 81130-81141, 2016.
  • 24. Tavares, P.H.C.P., Barbeira, P.J.S., “Influence of pencil lead hardness on voltammetric response of graphite reinforcement carbon electrodes”. Journal of Applied Electrochemistry, Vol. 38, Pages 827-832, 2008.
  • 25. Torrinha, A., Amorim, C.G., Montenegro, M.C.B.S.M. and Araújo, A.N., “Biosensing based on pencil graphite electrodes”, Talanta, Vol. 190, Issue 1, Pages 235-247, 2018.
  • 26. Foster, C.H., Brownson, D.A.C., Ruas de Souza, A.P., Bernalte, E., Iniesta, J., Bertotti, M. and Banks, C.E., “Pencil it in: pencil drawn electrochemical sensing platforms”, Analyst, Vol. 141, Pages 4055-4064, 2016.
  • 27. Navratil. R., Kotzianova, A., Halouzka, V., Opletal, T., Triskova, I., Trnkova, L. And Hrbac, J., “Polymer lead pencil graphite as electrode material: Voltammetric, XPS and Raman study”, Journal of Electroanalytical Chemistry, Vol. 783, Issue15, Pages 152-160, 2016.
  • 28. Kariuki, J.K., “An Electrochemical and Spectroscopic Characterization of Pencil Graphite Electrodes” Journal of The Electrochemical Society, Vol. 159, Issue 9, H747, 2012.
  • 29. Masawat, P., Liawruangrath, S., Vaneesorn, Y. and Liawruangrath, B., “Design and fabrication of a low-cost flow-through cell for the determination of acetaminophen in pharmaceutical formulations by flow injection cyclic voltammetry”, Talanta, Vol. 58, Issue 6, Pages 1221-1234, 2002.
  • 30. Buratti, S., Scampicchio, M., Giovanelli, G. and Mannino, S., “A low-cost and low-tech electrochemical flow system for the evaluation of total phenolic content and antioxidant power of tea infusions”, Talanta, Vol. 75, Issue 1, Pages 312-316, 2008.
  • 31. Ozge, K., Hurmus, G., Semih, G, and Sahin, Y, “Highly sensitive electrochemical determination of dopamine with an overoxidized polypyrrole nanofiber pencil graphite electrode”, International Journal of Electrochemical Science, Vol. 12, Issue 7, Pages 6428-644, 2017.
  • 32. Özbek, A. and Özcan, L. “Voltammetric performance of nanofiber structured over-oxidized poly (3, 4-ethylenedioxythiophene) modified pencil graphite electrodes for dobutamine sensing”, Journal of the Turkish Chemical Society Section A: Chemistry, Vol. 11, Issue 1, pages 55-70, 2024.
  • 33. Ayaz, S., Karakaya, S., Emir, G., Uşaklıgil, N., Giray Dilgin, D., Dilgin, Y., “Flow-Injection Amperometric Determination of Glucose Using Nickel Oxide-Cobalt (II,III) Oxide and Nickel Oxide-Copper Nanoparticle Modified Pencil Graphite Electrodes”, Analytical Letters, Vol. 55, Issue 13, Pages 2046 – 2057, 2022.
  • 34. Yazar, S., Arvas, M.B., Polat, B. aOzeroglu, C., “Green Synthesis of Copper Oxide Nanoparticle Decorated Polypyrrole-Chitosan on Pencil Graphite Electrode for Enzyme-Free Glucose Sensors”, ECS Journal of Solid State Science and Technology, Vol. 12, Issue 7, Article number 077002, 2023.
  • 35. Özcan, L., Altuntas, M., Büyüksağiş, A., Türk H. and Yurdakal, S., “Electrochemical determination of bisphenol A with pencil graphite electrodes modified with Co(II), Ni(II), Cu(II) and Fe(II) phthalocyaninetetrasulfonates”, Analytical Sciences, Vol. 32, Issue 8, Pages 881-886, 2016.
  • 36. Dilgin, D.G., Ertek, B. And Dilgin, Y., “A low-cost, fast, disposable and sensitive biosensor study: flow injection analysis of glucose at poly-methylene blue-modified pencil graphite electrode” Journal of the Iranian Chemical Society, Vol. 15, Issue 6, Pages 1355 – 13631, 2018.
  • 37. Özcan L., Cu(II), Ni(II), Co(II) ve Fe(II) “Metaloftalosiyanintetrasülfonat Modifiye Kalem Ucu Elektrotlar ile Elektrokimyasal Dopamin Tayini”,Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, Cilt 19, Sayı 2, Sayfa 291-300, 2019.
  • 38. Lakhera P., Chaudhary V., Jha A., Singh R., Kush P., Kush P. and Kumar P., “Recent developments and fabrication of the different electrochemical biosensors based on modified screen printed and glassy carbon electrodes for the early diagnosis of diverse breast cancer biomarkers”, Materials Today Chemistry, Vol. 26, Article Number 101129, 2022.
  • 39. Taleat, Z., Khoshroo, A. and Mazloum-Ardakani, M., “Screen-printed electrodes for biosensing: A review (2008-2013)”, Microchim. Acta. Vol. 181, Pages 865–89, 2014.
  • 40. Taufiq, S., Waqar, M., Sharif, M.N. and Abbas, S.R., “Towards portable rapid TB biosensor: detecting mycobacterium tuberculosis in raw sputum samples using functionalized screen printed electrodes”, Bioelectrochemistry, Vol. 150, Article number 108353, 2023.
  • 41. Scognamiglio, V. Pezzotti, I., Pezzotti, G., Cano, J., Manfredonia, I., Buonasera, K., Rodio, G. and Giardi, M.T. “A new embedded biosensor platform based on micro-electrodes array (MEA) technology”, Sensors and Actuators, B: Chemical, Vol. 176, Pages 275-283, 2013.
  • 42. Juska, V.B. and Pemble, M., “A dual-enzyme, micro-band array biosensor based on the electrodeposition of carbon nanotubes embedded in chitosan and nanostructured Au-foams on microfabricated gold band electrodes”, Analyst, Vol. 145, Issue 2, Pages 402-414, 2020.
  • 43. “Screen-printed electrodes” https://www.dropsens.com/en/screen_printed_electrodes_pag.html, Temmuz 17, 2023.
  • 44. Mistry, K.K., Layek, K., Mahapatra, A., RoyChaudhurib, C. and Saha, H., “A review on amperometric-type immunosensors based on screen-printed electrodes”, Analyst, Vol. 139, Pages 2289-2311, 2014.
  • 45. Cano, J.B., Buonasera, K. and Pezzotti, G., “Transduction methods used on biosensors: amperometry and fluorescence”, Revista Facultad de Ingenieria de Antioquia, Vol. 72, Pages 104–115, 2014.
  • 46. Rackus, D.G., Shamsi, M.H. and Wheeler, A.R., “Electrochemistry, biosensors and microfluidics: a convergence of fields”, Chemical Society Review, Vol. 44, Pages 5320–5340, 2015. 47. Neves, M.M.P.S., González-García, M.B., Hernández-Santos, D. and Fanjul-Bolado, P., “Screen-Printed electrochemical 96-well plate: A high-throughput platform for multiple analytical applications”, Electroanalysis, Vol. 26, Isuue 12, Pages 2764-2772, 2014.
  • 48. Tseng, H.-Y., Lizama, J.H., Shen, Y.-W. and Chen, C.-J., “The pursuit of further miniaturization of screen printed micro paper-based analytical devices utilizing controlled penetration towards optimized channel patterning”, Scientific Reports, Vol. 11, Issue 1, Article number 21496, 2021.
  • 49. Berman, B., “3-D printing: The new industrial revolution”. Business Horizons, Vol 55, Issue 2, 155-162, 2012.
  • 50. Jones, R., Haufe, P., Sells, E., Iravani, P., Olliver, V., Palmer, C. and Bowyer, A., “RepRap-the replicating rapid prototyper”. Robotica, Vol. 29, Issue 01, Pages 177-191, 2011.
  • 51. Bilton, N., “Shapeways, having printed 1 million objects, secures more financing”, The New York Times, 2012.
  • 52. Rohaizada, N., Mayorga-Martinez, C.C., Novotny, F., Webster, R.D. and Pumera, M. 2019, “3D-printed Ag/AgCl pseudo-reference electrodes”, Electrochemistry Communications, Vol. 103, Pages 104-108, 2019.
  • 53. Glavan, A.C., Christodouleas, D.C., Mosadegh, B., Yu, H. D., Smith, B.S., Lessing, J., Teresa Fernandez-Abedul, ́M. and Whitesides, G.M., “Folding analytical devices for electrochemical ELISA in hydrophobic RH paper”, Analytical Chemistry, Vol. 86, Pages 11999−12007, 2014.
  • 54. Torrinha, A., Amorim, C.G., Maria, Montenegro, C.B.S.M. and Araújo, A.N., “Biosensing based on pencil graphite electrodes”, Talanta, Vol. 190, Issue 1, Pages 235-247, 2018.
  • 55. Katseli, V., Economou, A. and Kokkinos, C., “Single-step fabrication of an integrated 3D-printed device for electrochemical sensing applications”, Electrochemistry Communications, Vol. 103, Pages 100-103, 2019.
  • 56. Salve, M., Mandal, A., Amreen, K., Pattnaik, P.K. and Goel, S., “Greenly synthesized silver nanoparticles for supercapacitor and electrochemical sensing applications in a 3D printed microfluidic platform”, Microchemical Journal, Vol. 157, article number 104973, 2020.
There are 54 citations in total.

Details

Primary Language Turkish
Subjects Mechanical Engineering (Other)
Journal Section Research Article
Authors

Levent Özcan 0000-0003-4504-4237

Ahmet Fatih Yuran 0000-0002-2105-2614

Project Number 17.MÜH.16
Early Pub Date April 26, 2024
Publication Date April 30, 2024
Submission Date July 8, 2023
Published in Issue Year 2024

Cite

APA Özcan, L., & Yuran, A. F. (2024). ÜÇ BOYUTLU YAZICIYLA ÜRETİLMİŞ YÜZEY BASKILI ELEKTROT BENZERİ SİSTEMİN ELEKTROKİMYASAL UYGULAMASI. International Journal of 3D Printing Technologies and Digital Industry, 8(1), 80-91. https://doi.org/10.46519/ij3dptdi.1324695
AMA Özcan L, Yuran AF. ÜÇ BOYUTLU YAZICIYLA ÜRETİLMİŞ YÜZEY BASKILI ELEKTROT BENZERİ SİSTEMİN ELEKTROKİMYASAL UYGULAMASI. IJ3DPTDI. April 2024;8(1):80-91. doi:10.46519/ij3dptdi.1324695
Chicago Özcan, Levent, and Ahmet Fatih Yuran. “ÜÇ BOYUTLU YAZICIYLA ÜRETİLMİŞ YÜZEY BASKILI ELEKTROT BENZERİ SİSTEMİN ELEKTROKİMYASAL UYGULAMASI”. International Journal of 3D Printing Technologies and Digital Industry 8, no. 1 (April 2024): 80-91. https://doi.org/10.46519/ij3dptdi.1324695.
EndNote Özcan L, Yuran AF (April 1, 2024) ÜÇ BOYUTLU YAZICIYLA ÜRETİLMİŞ YÜZEY BASKILI ELEKTROT BENZERİ SİSTEMİN ELEKTROKİMYASAL UYGULAMASI. International Journal of 3D Printing Technologies and Digital Industry 8 1 80–91.
IEEE L. Özcan and A. F. Yuran, “ÜÇ BOYUTLU YAZICIYLA ÜRETİLMİŞ YÜZEY BASKILI ELEKTROT BENZERİ SİSTEMİN ELEKTROKİMYASAL UYGULAMASI”, IJ3DPTDI, vol. 8, no. 1, pp. 80–91, 2024, doi: 10.46519/ij3dptdi.1324695.
ISNAD Özcan, Levent - Yuran, Ahmet Fatih. “ÜÇ BOYUTLU YAZICIYLA ÜRETİLMİŞ YÜZEY BASKILI ELEKTROT BENZERİ SİSTEMİN ELEKTROKİMYASAL UYGULAMASI”. International Journal of 3D Printing Technologies and Digital Industry 8/1 (April 2024), 80-91. https://doi.org/10.46519/ij3dptdi.1324695.
JAMA Özcan L, Yuran AF. ÜÇ BOYUTLU YAZICIYLA ÜRETİLMİŞ YÜZEY BASKILI ELEKTROT BENZERİ SİSTEMİN ELEKTROKİMYASAL UYGULAMASI. IJ3DPTDI. 2024;8:80–91.
MLA Özcan, Levent and Ahmet Fatih Yuran. “ÜÇ BOYUTLU YAZICIYLA ÜRETİLMİŞ YÜZEY BASKILI ELEKTROT BENZERİ SİSTEMİN ELEKTROKİMYASAL UYGULAMASI”. International Journal of 3D Printing Technologies and Digital Industry, vol. 8, no. 1, 2024, pp. 80-91, doi:10.46519/ij3dptdi.1324695.
Vancouver Özcan L, Yuran AF. ÜÇ BOYUTLU YAZICIYLA ÜRETİLMİŞ YÜZEY BASKILI ELEKTROT BENZERİ SİSTEMİN ELEKTROKİMYASAL UYGULAMASI. IJ3DPTDI. 2024;8(1):80-91.

 download

Uluslararası 3B Yazıcı Teknolojileri ve Dijital Endüstri Dergisi Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.