Research Article
BibTex RIS Cite

CHARACTERIZATION OF 3D PRINTED CONDUCTIVE FLEXIBLE MATERIALS FOR SOFT ROBOTIC APPLICATIONS

Year 2024, , 1 - 7, 30.04.2024
https://doi.org/10.46519/ij3dptdi.1349314

Abstract

Soft robots composed of compliant and flexible materials can safely interact with humans and adapt to unstructured environments. However, integrating sensors, actuators, and control circuits into soft structures remains challenging. Additive manufacturing shows promise for fabricating soft robots with embedded electronics using conductive flexible composites. Nevertheless, there is still a limited understanding of the electromechanical behavior of 3D-printed conductive structures when subjected to the types of strains relevant to soft robotics applications. Optimized design requires characterizing the interplay between a soft component's changing shape and electrical properties during deformation. This study investigates the application of 3D printing technology to fabricate various geometries using a conductive, flexible material for soft robotic applications. The primary objective is to understand and characterize the behavior of differently shaped 3D-printed conductive materials under various mechanical stresses. Two distinct test setups are designed for conducting bending and tensile tests on the produced materials. Diverse geometries are printed using the conductive flexible material with desirable mechanical and electrical properties to employ tensile and bending tests. The experiments reveal a direct correlation between shape change and electrical resistance of the 3D printed materials, providing valuable insights into their adaptability for soft robotics. According to numerical results, honeycomb profiles are found to be the most linear and stable profile type. This research not only contributes to the field of flexible conductive materials but also lays the foundation for integrating these materials into future engineering designs, potentially enabling the development of highly responsive and adaptable devices for various industries.

References

  • 1. Yasa, O et al., "An Overview of Soft Robotics", Annual Review of Control, Robotics, and Autonomous Systems, Vol. 6, Pages 1-29, 2023.
  • 2. Rus, D. and Tolley, M. T., "Design, fabrication, and control of soft robots", Nature, Vol. 521, Issue 7553, Pages 467-475, 2015.
  • 3. Majidi, C., "Soft‐Matter engineering for soft robotics", Adv. Mater. Technol., Vol.4 Issue 2, Page 1800477, 2018.
  • 4. Ze, Q., Wu, S. et al. "Soft robotic origami crawler." Science advances Vol. 8, Issue13 pages eabm7834, 2022.
  • 5. Wallin, T. J. J., Pikul, J. and Shepherd, R. F., "3D printing of soft robotic systems", Nat. Rev. Mater., Vol. 3, Issue 6, Pages 84-100, 2018.
  • 6. Yazici , M. V., Kahveci, A. , Kiziltas, F. S., Mulayim, N., and Gezgin, E.," Design and Development of a Surgical Robotic Hand with Hybrid Structure", 2018 Medical Technologies National Congress (TIPTEKNO), Magusa: IEEE, Pages 1-4, 2018.
  • 7. Appiah, C., Arndt, C., Siemsen, K., Heitmann, A., Staubitz, A., and Selhuber‐Unkel, C., “Living Materials Herald a New Era in Soft Robotics”, Adv. Mater., Vol. 31, Issue 36, Page 1807747, 2019.
  • 8. Stoyanov, H., Kollosche, H. M., Risse, S., Waché, R., and Kofod, G., "Soft conductive elastomer materials for stretchable electronics and voltage controlled artificial muscles", Adv. Mater., Vol. 25, Issue 4, Pages 578-583, 2013.
  • 9. Kwok, S. W., Goh, K. H. H., Tan, Z. D., Tan, S. T. M., Tjiu, W. W., Soh, J. Y., and Goh, K. E. J. "Electrically conductive filament for 3D-printed circuits and sensors", Applied Materials Today, Vol. 9, Pages 167-175, 2017.
  • 10. Kim, S., Kim, S., Majditehran, H., Patel, DK., Majidi, C., and Bergbreiter, S., "Electromechanical Characterization of 3D Printable Conductive Elastomer for Soft Robotics" 3rd IEEE International Conference on Soft Robotics (RoboSoft). IEEE, 2020..
  • 11. Hwang, Y., Paydar, O. H., and Candler, R. N., "Pneumatic microfinger with balloon fins for linear motion using 3D printed molds", Sensors and Actuators A: Physical, Vol. 234, Pages 65-71, 2015.
  • 12. Selvi, Ö., Telli, İ., Totuk, H. O., and Mıstıkoğlu, S., "3D printing soft robots using low-cost consumer 3D printers", 2019.
  • 13. Flowers, P. F., Reyes, C., Ye, S., Kim, M. J., and Wiley, B. J., "3D printing electronic components and circuits with conductive thermoplastic filament", Additive Manufacturing, Vol. 18, Pages 156-163, 2017.
  • 14. Tang, L., Wu, S., Qu, J., Gong, L., and Tang, J., "A review of conductive hydrogel used in flexible strain sensor", Materials, Vol. 13, Issue 18, p. 3947, 2020.
  • 15. Vignali, E., Gasparotti, E., Capellini, K., Fanni, B. M., Landini, L., Positano, V., and Celi, S. "Modeling biomechanical interaction between soft tissue and soft robotic instruments: importance of constitutive anisotropic hyperelastic formulations", The International Journal of Robotics Research, Vol. 40, Issue 1, Pages 224-235, 2021.
  • 16. Selvi̇, Ö., Totuk O. H., Mistikoğlu S., and Arslan O., "Strengthening effect of flooding in 3d printed porous soft robotics scaffolds", International Journal of 3D Printing Technologies and Digital Industry, Vol. 5, Issue 2, Pages 293-301, 2021.
  • 17. Muth, J. T., Vogt, D. M., Truby, R. L., Mengüç, Y., Kolesky, D. B., Wood, R. J., and Lewis, J. A. "Embedded 3D printing of strain sensors within highly stretchable elastomers", Adv. Mater., Vol. 26, Issue 36, Pages 6307-6312, 2014.
  • 18. Lo, C. Y., Zhao, Y., Kim, C., Alsaid, Y., Khodambashi, R., Peet, M., and He, X. "Highly stretchable self-sensing actuator based on conductive photothermally-responsive hydrogel", Materials Today, Vol. 50, Pages 35-43, 2021.
Year 2024, , 1 - 7, 30.04.2024
https://doi.org/10.46519/ij3dptdi.1349314

Abstract

References

  • 1. Yasa, O et al., "An Overview of Soft Robotics", Annual Review of Control, Robotics, and Autonomous Systems, Vol. 6, Pages 1-29, 2023.
  • 2. Rus, D. and Tolley, M. T., "Design, fabrication, and control of soft robots", Nature, Vol. 521, Issue 7553, Pages 467-475, 2015.
  • 3. Majidi, C., "Soft‐Matter engineering for soft robotics", Adv. Mater. Technol., Vol.4 Issue 2, Page 1800477, 2018.
  • 4. Ze, Q., Wu, S. et al. "Soft robotic origami crawler." Science advances Vol. 8, Issue13 pages eabm7834, 2022.
  • 5. Wallin, T. J. J., Pikul, J. and Shepherd, R. F., "3D printing of soft robotic systems", Nat. Rev. Mater., Vol. 3, Issue 6, Pages 84-100, 2018.
  • 6. Yazici , M. V., Kahveci, A. , Kiziltas, F. S., Mulayim, N., and Gezgin, E.," Design and Development of a Surgical Robotic Hand with Hybrid Structure", 2018 Medical Technologies National Congress (TIPTEKNO), Magusa: IEEE, Pages 1-4, 2018.
  • 7. Appiah, C., Arndt, C., Siemsen, K., Heitmann, A., Staubitz, A., and Selhuber‐Unkel, C., “Living Materials Herald a New Era in Soft Robotics”, Adv. Mater., Vol. 31, Issue 36, Page 1807747, 2019.
  • 8. Stoyanov, H., Kollosche, H. M., Risse, S., Waché, R., and Kofod, G., "Soft conductive elastomer materials for stretchable electronics and voltage controlled artificial muscles", Adv. Mater., Vol. 25, Issue 4, Pages 578-583, 2013.
  • 9. Kwok, S. W., Goh, K. H. H., Tan, Z. D., Tan, S. T. M., Tjiu, W. W., Soh, J. Y., and Goh, K. E. J. "Electrically conductive filament for 3D-printed circuits and sensors", Applied Materials Today, Vol. 9, Pages 167-175, 2017.
  • 10. Kim, S., Kim, S., Majditehran, H., Patel, DK., Majidi, C., and Bergbreiter, S., "Electromechanical Characterization of 3D Printable Conductive Elastomer for Soft Robotics" 3rd IEEE International Conference on Soft Robotics (RoboSoft). IEEE, 2020..
  • 11. Hwang, Y., Paydar, O. H., and Candler, R. N., "Pneumatic microfinger with balloon fins for linear motion using 3D printed molds", Sensors and Actuators A: Physical, Vol. 234, Pages 65-71, 2015.
  • 12. Selvi, Ö., Telli, İ., Totuk, H. O., and Mıstıkoğlu, S., "3D printing soft robots using low-cost consumer 3D printers", 2019.
  • 13. Flowers, P. F., Reyes, C., Ye, S., Kim, M. J., and Wiley, B. J., "3D printing electronic components and circuits with conductive thermoplastic filament", Additive Manufacturing, Vol. 18, Pages 156-163, 2017.
  • 14. Tang, L., Wu, S., Qu, J., Gong, L., and Tang, J., "A review of conductive hydrogel used in flexible strain sensor", Materials, Vol. 13, Issue 18, p. 3947, 2020.
  • 15. Vignali, E., Gasparotti, E., Capellini, K., Fanni, B. M., Landini, L., Positano, V., and Celi, S. "Modeling biomechanical interaction between soft tissue and soft robotic instruments: importance of constitutive anisotropic hyperelastic formulations", The International Journal of Robotics Research, Vol. 40, Issue 1, Pages 224-235, 2021.
  • 16. Selvi̇, Ö., Totuk O. H., Mistikoğlu S., and Arslan O., "Strengthening effect of flooding in 3d printed porous soft robotics scaffolds", International Journal of 3D Printing Technologies and Digital Industry, Vol. 5, Issue 2, Pages 293-301, 2021.
  • 17. Muth, J. T., Vogt, D. M., Truby, R. L., Mengüç, Y., Kolesky, D. B., Wood, R. J., and Lewis, J. A. "Embedded 3D printing of strain sensors within highly stretchable elastomers", Adv. Mater., Vol. 26, Issue 36, Pages 6307-6312, 2014.
  • 18. Lo, C. Y., Zhao, Y., Kim, C., Alsaid, Y., Khodambashi, R., Peet, M., and He, X. "Highly stretchable self-sensing actuator based on conductive photothermally-responsive hydrogel", Materials Today, Vol. 50, Pages 35-43, 2021.
There are 18 citations in total.

Details

Primary Language English
Subjects Control Engineering, Mechatronics and Robotics (Other)
Journal Section Research Article
Authors

Ozan Arslan 0000-0001-6681-5518

Özgün Selvi 0000-0003-4937-1489

Onat Halis Totuk 0000-0002-9314-9204

Early Pub Date April 26, 2024
Publication Date April 30, 2024
Submission Date August 24, 2023
Published in Issue Year 2024

Cite

APA Arslan, O., Selvi, Ö., & Totuk, O. H. (2024). CHARACTERIZATION OF 3D PRINTED CONDUCTIVE FLEXIBLE MATERIALS FOR SOFT ROBOTIC APPLICATIONS. International Journal of 3D Printing Technologies and Digital Industry, 8(1), 1-7. https://doi.org/10.46519/ij3dptdi.1349314
AMA Arslan O, Selvi Ö, Totuk OH. CHARACTERIZATION OF 3D PRINTED CONDUCTIVE FLEXIBLE MATERIALS FOR SOFT ROBOTIC APPLICATIONS. IJ3DPTDI. April 2024;8(1):1-7. doi:10.46519/ij3dptdi.1349314
Chicago Arslan, Ozan, Özgün Selvi, and Onat Halis Totuk. “CHARACTERIZATION OF 3D PRINTED CONDUCTIVE FLEXIBLE MATERIALS FOR SOFT ROBOTIC APPLICATIONS”. International Journal of 3D Printing Technologies and Digital Industry 8, no. 1 (April 2024): 1-7. https://doi.org/10.46519/ij3dptdi.1349314.
EndNote Arslan O, Selvi Ö, Totuk OH (April 1, 2024) CHARACTERIZATION OF 3D PRINTED CONDUCTIVE FLEXIBLE MATERIALS FOR SOFT ROBOTIC APPLICATIONS. International Journal of 3D Printing Technologies and Digital Industry 8 1 1–7.
IEEE O. Arslan, Ö. Selvi, and O. H. Totuk, “CHARACTERIZATION OF 3D PRINTED CONDUCTIVE FLEXIBLE MATERIALS FOR SOFT ROBOTIC APPLICATIONS”, IJ3DPTDI, vol. 8, no. 1, pp. 1–7, 2024, doi: 10.46519/ij3dptdi.1349314.
ISNAD Arslan, Ozan et al. “CHARACTERIZATION OF 3D PRINTED CONDUCTIVE FLEXIBLE MATERIALS FOR SOFT ROBOTIC APPLICATIONS”. International Journal of 3D Printing Technologies and Digital Industry 8/1 (April 2024), 1-7. https://doi.org/10.46519/ij3dptdi.1349314.
JAMA Arslan O, Selvi Ö, Totuk OH. CHARACTERIZATION OF 3D PRINTED CONDUCTIVE FLEXIBLE MATERIALS FOR SOFT ROBOTIC APPLICATIONS. IJ3DPTDI. 2024;8:1–7.
MLA Arslan, Ozan et al. “CHARACTERIZATION OF 3D PRINTED CONDUCTIVE FLEXIBLE MATERIALS FOR SOFT ROBOTIC APPLICATIONS”. International Journal of 3D Printing Technologies and Digital Industry, vol. 8, no. 1, 2024, pp. 1-7, doi:10.46519/ij3dptdi.1349314.
Vancouver Arslan O, Selvi Ö, Totuk OH. CHARACTERIZATION OF 3D PRINTED CONDUCTIVE FLEXIBLE MATERIALS FOR SOFT ROBOTIC APPLICATIONS. IJ3DPTDI. 2024;8(1):1-7.

 download

Uluslararası 3B Yazıcı Teknolojileri ve Dijital Endüstri Dergisi Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.