Additive manufacturing has witnessed remarkable growth, transforming the production of intricate geometries. However, post-processing is often required to enhance surface quality and alleviate residual stresses in additively manufactured components. Laser polishing, an advanced technique, efficiently reduces surface roughness in metals. This study stands out by conducting laser polishing without protective gas in an open atmosphere. Results demonstrate that surface roughness can be improved by up to 50% under these conditions. Nevertheless, the process introduces a recast layer with significant oxidation due to atmospheric oxygen, leading to the formation of a Titanium Oxide layer and the development of surface microcracks. As oxidation increases, surface hardness also rises. Achieving high-quality surfaces for additively manufactured Ti alloys in an open atmosphere is attainable, provided vigilant monitoring of oxidation-related challenges. This study reveals the intricate relationship between laser polishing, surface characteristics, and the effects of open-air conditions on Ti-6Al-4V components.
Primary Language | English |
---|---|
Subjects | Mechanical Engineering (Other) |
Journal Section | Research Article |
Authors | |
Early Pub Date | December 25, 2023 |
Publication Date | December 31, 2023 |
Submission Date | August 26, 2023 |
Published in Issue | Year 2023 |
Uluslararası 3B Yazıcı Teknolojileri ve Dijital Endüstri Dergisi Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.