Research Article
BibTex RIS Cite

LASER POLISHING OF ADDITIVELY MANUFACTURED TITANIUM ALLOY IN OPEN AIR ATMOSPHERE

Year 2023, , 456 - 470, 31.12.2023
https://doi.org/10.46519/ij3dptdi.1350367

Abstract

Additive manufacturing has witnessed remarkable growth, transforming the production of intricate geometries. However, post-processing is often required to enhance surface quality and alleviate residual stresses in additively manufactured components. Laser polishing, an advanced technique, efficiently reduces surface roughness in metals. This study stands out by conducting laser polishing without protective gas in an open atmosphere. Results demonstrate that surface roughness can be improved by up to 50% under these conditions. Nevertheless, the process introduces a recast layer with significant oxidation due to atmospheric oxygen, leading to the formation of a Titanium Oxide layer and the development of surface microcracks. As oxidation increases, surface hardness also rises. Achieving high-quality surfaces for additively manufactured Ti alloys in an open atmosphere is attainable, provided vigilant monitoring of oxidation-related challenges. This study reveals the intricate relationship between laser polishing, surface characteristics, and the effects of open-air conditions on Ti-6Al-4V components.

References

  • 1. Grimm, T., Wiora, G., Witt, G., “Characterization of Typical Surface Effects In Additive Manufacturing With Confocal Microscopy”, Surface Topography: Metrology and Properties, Vol. 3 Issue 1, 2015.
  • 2. Temmler, A., Willenborg, E., Wissenbach, K., “Design surfaces by laser remelting”, Physics Procedia, Vol. 12, Issue A, Pages 419–430, 2011.
  • 3. Temmler A., Willenborg E., Wissenbach K., “Laser Polishing”, In Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XVII 2012, Proceedings of Vol. 8243, San Francisco, California, United States, 2012.
  • 4. Ermergen T., Taylan F., “Review on Surface Quality Improvement of Additively Manufactured Metals by Laser Polishing”, Arabian Journal for Science and Engineering, Vol. 46, Pages 7125-7141, 2021.
  • 5. Perez M., Carou D., Rubio E.M., Teti R., “Current advances in additive manufacturing” Procedia CIRP, Vol. 88, Pages 439-444, 2020.
  • 6. Ermergen T., Taylan F., “Investigation of DOE model analyses for open atmosphere laser polishing of additively manufactured Ti-6Al-4V samples by using ANOVA” Optics & Laser Technology, Vol. 168, 2024.
  • 7. Gardner L., “Metal additive manufacturing in structural engineering – review, advances, opportunities and Outlook”, Structures, Vol. 47, Pages 2178-2193, 2023.
  • 8. Wu D., Yu X., Zhao Z., Ma G., Zhou C., Zhang B., Ren G., Niu F., “One-step additive manufacturing of TiCp reinforced Al2O3–ZrO2 eutectic ceramics composites by laser directed energy deposition”, Ceramics International, Vol. 49, Issue 8, Pages 12758-12771, 2023.
  • 9. Ergene B., Bolat Ç., “An experimental study on the role of manufacturing parameters on the dry sliding wear performance of additively manufactured PETG”, The Journal of International Polymer Processing, Vol. 37, Issue 3, Pages 255-270, 2022.
  • 10. Mishra V., Negi S., Kar S., “FDM-based additive manufacturing of recycled thermoplastics and associated composites”, Journal of Material Cycles and Waste Management, Vol. 25, Pages 758-784, 2023.
  • 11. Ergene B., Yalçın B., “Eriyik yığma modelleme (EYM) ile üretilen çeşitli hücresel yapıların mekanik performanslarının incelenmesi”, Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, Vol. 38, Issue 1, Pages 201-218, 2023.
  • 12. Patel R., Desai C., Kushwah S., Mangrola M.H., “A review article on FDM process parameters in 3D printing for composite materials”, Materials Today: Proceedings, Vol. 60, Issue 3, Pages 2162-2166, 2022.
  • 13. Marşavina L., Valean C., Marghitaş M., Linul E., Razavi N., Berto F., Brighenti R., “Effect of the manufacturing parameters on the tensile and fracture properties of FDM 3D-printed PLA specimens”, Engineering Fracture Mechanics, Vol. 274, 2022.
  • 14. Sefene M.E., “State-of-the-art of selective laser melting process: A comprehensive review”, Journal of Manufacturing Systems, Vol. 63, Pages 250-274, 2022.
  • 15. Brooks H., Rennie A., Abram T., “Variable fused deposition modelling— analysis of benefits, concept design and tool path generation”, In: Innovative Developments in Virtual and Physical Prototyping, Pages 511–517, 2011.
  • 16. Gu, D., Shen, Y., “Balling phenomena in direct laser sintering of stainless-steel powder: metallurgical mechanisms and control methods”, Materials & Design, Vol. 30, Issue 8, Pages 2903–2910, 2009.
  • 17. Zhang L-C., Attar H., “Selective Laser Melting of Titanium Alloys and Titanium Matrix Composites for Biomedical Applications: A Review”, Advanced Engineering Materials, Vol. 18, Issue 4, Pages 463-475, 2015.
  • 18. Saboori A., Gallo D., Biamino S., Fino P., Lombardi M., “An Overview of Additive Manufacturing of Titanium Components by Directed Energy Deposition: Microstructure and Mechanical Properties”, Applied Sciences, Vol. 17, Issue 9, Pages 883, 2017.
  • 19. Safavi M.S., Bordbar-Khiabani A., Khalil-Allafi J., Mozafari M., Visai L, “Additive Manufacturing: An Opportunity for the Fabrication of Near-Net-Shape NiTi Implants”, Journal of Manufacturing and Materials Processing, Vol. 6, Issue 3, Page 65, 2022.
  • 20. Ciganovic J., Stasic J., Gakovic B., Momcilovic M., Milovanovic D., Bokorov M., Trtica M., “Surface modification of the titanium implant using TEA CO2 laser pulses in controllable gas atmospheres – Comparative study”, Applied Surface Science, Vol. 258, Pages 2741-2748, 2012.
  • 21. Ageev E.I., Andreeva Y.M., Karlagina Y.Y., Kolobov Y.R., Manokhin S.S., Odintsova G.V., Slobodov A.A., Veiko V.P., “Composition analysis of oxide films formed on titanium surface under pulsed laser action by method of chemical thermodynamics”, Laser Physics, Vol. 24, Issue 7, 2017.
  • 22. Perez del Pino A., Serra P., Morenza J.L., “Laser Surface Processing of Titanium in Air: Influence Of Scan Traces Overlapping”, Journal of Laser Applications, Vol. 15, Issue 120, 2003.
  • 23. Jaritngam P., Tangwarodomnukun V., Qi H., Dumkun C., “Surface and Subsurface Characteristics of Laser Polished Ti6Al4V Titanium Alloy”, Optics&Laser Technology, Vol. 126, 2020. 24. Zeng C., Wen H., Zhang B., Sprunger P.T., Guo S.M., “Diffusion of Oxygen and Nitrogen into Titanium under Laser Irradiation in Air”, Applied Surface Science, Vol. 505, Issue 1, 2019.
  • 25. Lee S., Oh J.Y., Mukaeyama S., Sun S., Nakao T., “Preparation of Titanium Alloy/Bioactive Glass Composite for Biomedical Applications via Selective Laser Melting”, Material Transactions, Vol. 6, Issue 9, Pages 1779-1784, 2019.
  • 26. Li P., Wang Y., Li L., Gong Y., Zhou J., “Ablation oxidation and surface quality during laser polishing of TA15 aviation titanium alloy”, Journal of Materials Research and Technology, Vol.23, Pages 6101-6114, 2023
  • 27. Tian, Y., Gora, W.S., Cabo, A.P., Parimi, L. L., Hand, D.P., Tammas-Williams, S., Prangnell, P.B., “Material interactions in laser polishing powder bed additive manufactured Ti6Al4V components”, Additive Manufacturing, Vol. 20, Pages 11-22, 2018.
  • 28. Lee, S., Ahmadi, Z., Pegues, J., W., Mahjouri-Samani, M., Shamsaei, N., “Laser polishing for improving fatigue performance of additive manufactured Ti-6Al-4V parts”, Optics & Laser Technology, Vol. 134, 2021.
  • 29. Beretta S., Ghidini A., Lombardo F., “Fracture mechanics and scale effects in the fatigue of railway axles”, Engineering Fracture Mechanics, Vol. 72, Issue 2, Pages 195-208, 2005
  • 30. Bhaduri D., Penchev P., Batal A., Dimov S., Soo S.L., Sten S., Harrysoon U., Zhang Z., Dong H., “Laser polishing of 3D printed mesoscale components”, Applied Surface Science, Vol. 405, Pages 29-46, 2021.
  • 31. Kasperovich G., Hausmann J., "Improvement of fatigue resistance and ductility of TiAl6V4 processed by selective laser melting," Journal of Materials Processing Technology, Vol. 220, Pages 202-214, 2015.
  • 32. Shunmugavel, M., Polishettu A., Nomani J., Goldberg M., Littlefair G., “Metallurgical and Machinability Characteristics of Wrought and Selective Laser Melted Ti-6Al-4V”, Journal of Metallurgy, Vol. 2016, 2016.
  • 33. AZO Materials Home Page. https://www.azom.com/properties.aspx?ArticleID=1547. Access Date, 2023-03-02.
Year 2023, , 456 - 470, 31.12.2023
https://doi.org/10.46519/ij3dptdi.1350367

Abstract

References

  • 1. Grimm, T., Wiora, G., Witt, G., “Characterization of Typical Surface Effects In Additive Manufacturing With Confocal Microscopy”, Surface Topography: Metrology and Properties, Vol. 3 Issue 1, 2015.
  • 2. Temmler, A., Willenborg, E., Wissenbach, K., “Design surfaces by laser remelting”, Physics Procedia, Vol. 12, Issue A, Pages 419–430, 2011.
  • 3. Temmler A., Willenborg E., Wissenbach K., “Laser Polishing”, In Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XVII 2012, Proceedings of Vol. 8243, San Francisco, California, United States, 2012.
  • 4. Ermergen T., Taylan F., “Review on Surface Quality Improvement of Additively Manufactured Metals by Laser Polishing”, Arabian Journal for Science and Engineering, Vol. 46, Pages 7125-7141, 2021.
  • 5. Perez M., Carou D., Rubio E.M., Teti R., “Current advances in additive manufacturing” Procedia CIRP, Vol. 88, Pages 439-444, 2020.
  • 6. Ermergen T., Taylan F., “Investigation of DOE model analyses for open atmosphere laser polishing of additively manufactured Ti-6Al-4V samples by using ANOVA” Optics & Laser Technology, Vol. 168, 2024.
  • 7. Gardner L., “Metal additive manufacturing in structural engineering – review, advances, opportunities and Outlook”, Structures, Vol. 47, Pages 2178-2193, 2023.
  • 8. Wu D., Yu X., Zhao Z., Ma G., Zhou C., Zhang B., Ren G., Niu F., “One-step additive manufacturing of TiCp reinforced Al2O3–ZrO2 eutectic ceramics composites by laser directed energy deposition”, Ceramics International, Vol. 49, Issue 8, Pages 12758-12771, 2023.
  • 9. Ergene B., Bolat Ç., “An experimental study on the role of manufacturing parameters on the dry sliding wear performance of additively manufactured PETG”, The Journal of International Polymer Processing, Vol. 37, Issue 3, Pages 255-270, 2022.
  • 10. Mishra V., Negi S., Kar S., “FDM-based additive manufacturing of recycled thermoplastics and associated composites”, Journal of Material Cycles and Waste Management, Vol. 25, Pages 758-784, 2023.
  • 11. Ergene B., Yalçın B., “Eriyik yığma modelleme (EYM) ile üretilen çeşitli hücresel yapıların mekanik performanslarının incelenmesi”, Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, Vol. 38, Issue 1, Pages 201-218, 2023.
  • 12. Patel R., Desai C., Kushwah S., Mangrola M.H., “A review article on FDM process parameters in 3D printing for composite materials”, Materials Today: Proceedings, Vol. 60, Issue 3, Pages 2162-2166, 2022.
  • 13. Marşavina L., Valean C., Marghitaş M., Linul E., Razavi N., Berto F., Brighenti R., “Effect of the manufacturing parameters on the tensile and fracture properties of FDM 3D-printed PLA specimens”, Engineering Fracture Mechanics, Vol. 274, 2022.
  • 14. Sefene M.E., “State-of-the-art of selective laser melting process: A comprehensive review”, Journal of Manufacturing Systems, Vol. 63, Pages 250-274, 2022.
  • 15. Brooks H., Rennie A., Abram T., “Variable fused deposition modelling— analysis of benefits, concept design and tool path generation”, In: Innovative Developments in Virtual and Physical Prototyping, Pages 511–517, 2011.
  • 16. Gu, D., Shen, Y., “Balling phenomena in direct laser sintering of stainless-steel powder: metallurgical mechanisms and control methods”, Materials & Design, Vol. 30, Issue 8, Pages 2903–2910, 2009.
  • 17. Zhang L-C., Attar H., “Selective Laser Melting of Titanium Alloys and Titanium Matrix Composites for Biomedical Applications: A Review”, Advanced Engineering Materials, Vol. 18, Issue 4, Pages 463-475, 2015.
  • 18. Saboori A., Gallo D., Biamino S., Fino P., Lombardi M., “An Overview of Additive Manufacturing of Titanium Components by Directed Energy Deposition: Microstructure and Mechanical Properties”, Applied Sciences, Vol. 17, Issue 9, Pages 883, 2017.
  • 19. Safavi M.S., Bordbar-Khiabani A., Khalil-Allafi J., Mozafari M., Visai L, “Additive Manufacturing: An Opportunity for the Fabrication of Near-Net-Shape NiTi Implants”, Journal of Manufacturing and Materials Processing, Vol. 6, Issue 3, Page 65, 2022.
  • 20. Ciganovic J., Stasic J., Gakovic B., Momcilovic M., Milovanovic D., Bokorov M., Trtica M., “Surface modification of the titanium implant using TEA CO2 laser pulses in controllable gas atmospheres – Comparative study”, Applied Surface Science, Vol. 258, Pages 2741-2748, 2012.
  • 21. Ageev E.I., Andreeva Y.M., Karlagina Y.Y., Kolobov Y.R., Manokhin S.S., Odintsova G.V., Slobodov A.A., Veiko V.P., “Composition analysis of oxide films formed on titanium surface under pulsed laser action by method of chemical thermodynamics”, Laser Physics, Vol. 24, Issue 7, 2017.
  • 22. Perez del Pino A., Serra P., Morenza J.L., “Laser Surface Processing of Titanium in Air: Influence Of Scan Traces Overlapping”, Journal of Laser Applications, Vol. 15, Issue 120, 2003.
  • 23. Jaritngam P., Tangwarodomnukun V., Qi H., Dumkun C., “Surface and Subsurface Characteristics of Laser Polished Ti6Al4V Titanium Alloy”, Optics&Laser Technology, Vol. 126, 2020. 24. Zeng C., Wen H., Zhang B., Sprunger P.T., Guo S.M., “Diffusion of Oxygen and Nitrogen into Titanium under Laser Irradiation in Air”, Applied Surface Science, Vol. 505, Issue 1, 2019.
  • 25. Lee S., Oh J.Y., Mukaeyama S., Sun S., Nakao T., “Preparation of Titanium Alloy/Bioactive Glass Composite for Biomedical Applications via Selective Laser Melting”, Material Transactions, Vol. 6, Issue 9, Pages 1779-1784, 2019.
  • 26. Li P., Wang Y., Li L., Gong Y., Zhou J., “Ablation oxidation and surface quality during laser polishing of TA15 aviation titanium alloy”, Journal of Materials Research and Technology, Vol.23, Pages 6101-6114, 2023
  • 27. Tian, Y., Gora, W.S., Cabo, A.P., Parimi, L. L., Hand, D.P., Tammas-Williams, S., Prangnell, P.B., “Material interactions in laser polishing powder bed additive manufactured Ti6Al4V components”, Additive Manufacturing, Vol. 20, Pages 11-22, 2018.
  • 28. Lee, S., Ahmadi, Z., Pegues, J., W., Mahjouri-Samani, M., Shamsaei, N., “Laser polishing for improving fatigue performance of additive manufactured Ti-6Al-4V parts”, Optics & Laser Technology, Vol. 134, 2021.
  • 29. Beretta S., Ghidini A., Lombardo F., “Fracture mechanics and scale effects in the fatigue of railway axles”, Engineering Fracture Mechanics, Vol. 72, Issue 2, Pages 195-208, 2005
  • 30. Bhaduri D., Penchev P., Batal A., Dimov S., Soo S.L., Sten S., Harrysoon U., Zhang Z., Dong H., “Laser polishing of 3D printed mesoscale components”, Applied Surface Science, Vol. 405, Pages 29-46, 2021.
  • 31. Kasperovich G., Hausmann J., "Improvement of fatigue resistance and ductility of TiAl6V4 processed by selective laser melting," Journal of Materials Processing Technology, Vol. 220, Pages 202-214, 2015.
  • 32. Shunmugavel, M., Polishettu A., Nomani J., Goldberg M., Littlefair G., “Metallurgical and Machinability Characteristics of Wrought and Selective Laser Melted Ti-6Al-4V”, Journal of Metallurgy, Vol. 2016, 2016.
  • 33. AZO Materials Home Page. https://www.azom.com/properties.aspx?ArticleID=1547. Access Date, 2023-03-02.
There are 32 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering (Other)
Journal Section Research Article
Authors

Tolgahan Ermergen 0000-0001-6831-1268

Fatih Taylan 0000-0002-4518-0645

Early Pub Date December 25, 2023
Publication Date December 31, 2023
Submission Date August 26, 2023
Published in Issue Year 2023

Cite

APA Ermergen, T., & Taylan, F. (2023). LASER POLISHING OF ADDITIVELY MANUFACTURED TITANIUM ALLOY IN OPEN AIR ATMOSPHERE. International Journal of 3D Printing Technologies and Digital Industry, 7(3), 456-470. https://doi.org/10.46519/ij3dptdi.1350367
AMA Ermergen T, Taylan F. LASER POLISHING OF ADDITIVELY MANUFACTURED TITANIUM ALLOY IN OPEN AIR ATMOSPHERE. IJ3DPTDI. December 2023;7(3):456-470. doi:10.46519/ij3dptdi.1350367
Chicago Ermergen, Tolgahan, and Fatih Taylan. “LASER POLISHING OF ADDITIVELY MANUFACTURED TITANIUM ALLOY IN OPEN AIR ATMOSPHERE”. International Journal of 3D Printing Technologies and Digital Industry 7, no. 3 (December 2023): 456-70. https://doi.org/10.46519/ij3dptdi.1350367.
EndNote Ermergen T, Taylan F (December 1, 2023) LASER POLISHING OF ADDITIVELY MANUFACTURED TITANIUM ALLOY IN OPEN AIR ATMOSPHERE. International Journal of 3D Printing Technologies and Digital Industry 7 3 456–470.
IEEE T. Ermergen and F. Taylan, “LASER POLISHING OF ADDITIVELY MANUFACTURED TITANIUM ALLOY IN OPEN AIR ATMOSPHERE”, IJ3DPTDI, vol. 7, no. 3, pp. 456–470, 2023, doi: 10.46519/ij3dptdi.1350367.
ISNAD Ermergen, Tolgahan - Taylan, Fatih. “LASER POLISHING OF ADDITIVELY MANUFACTURED TITANIUM ALLOY IN OPEN AIR ATMOSPHERE”. International Journal of 3D Printing Technologies and Digital Industry 7/3 (December 2023), 456-470. https://doi.org/10.46519/ij3dptdi.1350367.
JAMA Ermergen T, Taylan F. LASER POLISHING OF ADDITIVELY MANUFACTURED TITANIUM ALLOY IN OPEN AIR ATMOSPHERE. IJ3DPTDI. 2023;7:456–470.
MLA Ermergen, Tolgahan and Fatih Taylan. “LASER POLISHING OF ADDITIVELY MANUFACTURED TITANIUM ALLOY IN OPEN AIR ATMOSPHERE”. International Journal of 3D Printing Technologies and Digital Industry, vol. 7, no. 3, 2023, pp. 456-70, doi:10.46519/ij3dptdi.1350367.
Vancouver Ermergen T, Taylan F. LASER POLISHING OF ADDITIVELY MANUFACTURED TITANIUM ALLOY IN OPEN AIR ATMOSPHERE. IJ3DPTDI. 2023;7(3):456-70.

 download

Uluslararası 3B Yazıcı Teknolojileri ve Dijital Endüstri Dergisi Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.