Review
BibTex RIS Cite

TITANIUM IMPLANT FOR DENTAL APPLICATIONS USING 3D PRINTING TECHNOLOGY

Year 2020, , 171 - 177, 29.08.2020
https://doi.org/10.46519/ij3dptdi.673652

Abstract

ABSTRACT The generic name was given to the production technology in which 3D objects are created by the sequential arrangement of material layers, also known as rapid prototyping or 3D printing. 3D printing technology has made it possible for many technological breakthroughs in medical and mass reproduction fields, especially in materials that these printers function. Recent developments have shown that titanium is allowed to be used as a building material in the 3D printing process. Titanium is a phenomenon in biomedical applications due to its superior dynamic and static properties. The unique anatomy of the orbital in living tissue applications of titanium implants, biologic inconveniences such as emerging surgical approach difficulties and inadequate modularity between bone and implants are predicted to be solved by the commitment of 3D Production to produce complex biomedical devices according to computer design using patient-specific anatomical data. In this study, it is aimed to give brief information about 3D printing technology and its advantages and to give information about the effects and advantages of 3D printing technology on titanium implants.

References

  • 1. Mishra, MrsSushree. "3D Printing Technology." ScienceHorizon 43 (2014).
  • 2. Ertugrul, I., Akkus, N., Yuce, H., Fabrication of bidirectional electrothermal microactuator by two-photon polymerization. Materials and Technology. Vol. 53, Issue 5, Pages 665-670, 2019.
  • 3. Lifton, V. A., Lifton, G., & Simon, S. (2014). Options for additive rapid prototyping methods (3D printing) in MEMS technology. Rapid Prototyping Journal, 20(5), 403-412.
  • 4. Lessing, J., Glavan, A. C., Walker, S. B., Keplinger, C., Lewis, J. A., & Whitesides, G. M. (2014). Inkjet Printing of conductive inks with high lateral resolution on omniphobic “Rf paper” for paper‐based electronics and MEMS. Advanced Materials, 26(27), 4677-4682.
  • 5. Ertugrul, I., Ülkir, O. (2020). MEMS Tabanlı Mikro Rezonatörün Tasarımı ve Analizi. Avrupa Bilim ve Teknoloji Dergisi , (18) , 25-29. DOI: 10.31590/ejosat.676368
  • 6. Ülkir, O., Ertugrul, I. (2020). Mikro Kiriş Uzunluğu Değişiminin Deformasyona Etkisinin Araştırılması. Avrupa Bilim ve Teknoloji Dergisi , (18) , 136-141. DOI: 10.31590/ejosat.672464
  • 7. Ertugrul, I., Akkus, N., Aygul, E., Yalcinkaya, S., Ertunç, H. (2020). MEMS Fabrication using PµSL Technique Based 3D Printer. International Journal of 3D Printing Technologies and Digital Industry, 4 (1), 38-43.
  • 8. Jones, H. B., Moore, C. P., Best, A. D., Bubendorfer, A. J., & Glasson, N. D. (2020, February). Rapid prototyping MEMS with laminated resin printing. In Emerging Digital Micromirror Device Based Systems and Applications XII (Vol. 11294, p. 1129407). International Society for Optics and Photonics.
  • 9. Ertugrul, I., Akkus, N., Aygül, E., Yalcinkaya, S. "Mems Fabrication Using 2PP Technique Based 3D Printer". International Journal of 3D Printing Technologies and Digital Industry 4 (2020): 12-17
  • 10. Blachowicz, T., & Ehrmann, A. (2020). 3D Printed MEMS Technology—Recent Developments and Applications. Micromachines, 11(4), 434.
  • 11. Ertugrul, I., Aygul, E., Yalcinkaya, S., Ulkir, O. (2019). “Analysis of MEMS Based Accelerometer Sensor via Comsol” 5nd International Congress on Engineering, Architecture and Design, 1(5).
  • 12. Barnett, Christopher. 3D printing: the next industrial revolution. Nottingham: Explaining TheFuture.com, 2013.
  • 13. Bogue, Robert. "3D printing: the dawn of a new era in manufacturing?" Assembly Automation 33.4 (2013):307-311.
  • 14. Campbell, Thomas, et al. "Could 3D printing change the world." Technologies, Potential, and Implications of AdditiveManufacturing, AtlanticCouncil, Washington, DC (2011).
  • 15. https://www.atlasobscura.com/articles/the-utopian-promise-of-reprap-the-3d-printer-that-canalmost-printitself
  • 16. Chia, Helena N., et al. 3D Printing in Medicine. Scientific Research Publishing, 2016.
  • 17. Schubert, Carl, Mark C. Van Langeveld, and carry A. Donoso."Innovations in 3D printing: a 3D overview from optics to organs." British Journal of Ophthalmology 98.2 (2014): 159-161.
  • 18. Pasinli, Ahmet. "Biyomedikal uygulamalarda kullanılan biyomalzemeler." Makine Teknolojileri Elektronik Dergisi 4 (2004): 25-34.
  • 19. Kasemo, B. "Biocompatibility of titanium implants: surface science aspects." The Journal of prosthetic dentistry 49.6 (1983): 832-837.
  • 20. Naomi, Mitsuo. "Mechanical properties of biomedical titanium alloys." Materials Science and Engineering: A 243.1 (1998): 231-236.
  • 21. Brunette, Donald M., et al., eds. Titanium in medicine: MaterialScience, surface science, engineering, biological responses, and medical applications. Springer Science & Business Media, 2012.
  • 22. Wiria, Florencia Edith, et al. "Printing of titanium implant prototype." Materials & Design 31 (2010): S101-S105.
  • 23. Dawood, A., et al. "3D printing in dentistry." British dental journal 219.11 (2015): 521-529.
  • 24. http://www.mdpi.com/journal/materials/special_issues/3D_Printing_Biomedical_Engineering
  • 25. Liu Q, Leu MC, Schmitt S M. Rapid prototyping in dentistry: technology and application. Int JAdvManufTechnol 2006; 29: 317–335.
  • 26. Venkatesh K V, Nandini V V. Direct metal laser-sintering: a digitized metal casting technology. JIndianProsthodontSoc 2013; 13: 389–392.
  • 27. Rengier, Fabian, et al. "3D printing based on imaging data: a review of medical applications." International journal of computer-assisted radiology and surgery 5.4 (2010): 335-341.
  • 28. Kayacan, M.C., Delikanlı, Y. E., Duman, B., & Özsoy, K. Ti6Al4v toz alaşımı kullanılarak SLS ile üretilen geçişli (değişken) gözenekli numunelerin mekanik özelliklerinin incelenmesi. Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, Vol. 33, Sayı 1, Sayfa 127-143,2018.
  • 29. Wagner J, Baack B, Brown G, Kelly J (2004) Rapid 3-dimensional prototyping for surgical repair of the maxilla of a cial fracture: a technical note. J Oral Maxillofac Surg 62:898–901.
  • 30. Kayacan, M. Y., Özsoy, K., Duman, B., Yilmaz, N., & Kayacan, M. C. A study on elimination of failures resulting from layering and internal stresses in Powder Bed Fusion (PBF) additive manufacturing. Materials and Manufacturing Processes, Vol 34, Issue 13, Pages 1467-1475,2019.
  • 31. Cima MJ, Sachs E, Cima LG, Yoo J, Khanuja S, Borland SW, et al. Computer derived microstructures by 3D printing: bio-and structural materials. SolidFreeformFabrSympProc: DTIC Document; 1994. p. 181-90.
  • 32. Wu BM, Borland SW, Giordano RA, Cima LG, Sachs EM, Cima MJ. Solid free-form fabrication of drug delivery devices. J Control Release. 1996; 40:77–87.
  • 33. Billiet T, Vandenhaute M, Schelfhout J, Van Vlierberghe S, Dubruel P. A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials. 2012; 33:602041.
  • 34. Chia, Helena N., and Benjamin M. Wu. "Recent advances in 3D printing of biomaterials." Journal of biological engineering9.1 (2015): 4.
  • 35. Uzun, İ. H, and Bayındır F., "Titanium and its properties in dental applications." Journal of Atatürk University Faculty of Dentistry, 2010.3 (2010).
  • 36. Tada, Shinichiro, et al. "Influence of implant design and bone quality on stress/strain distribution in bone around implants: a 3-dimensional finite element analysis." International Journal of Oral & Maxillofacial Implants 18.3 (2003).
  • 37. Clemow, A. J. T., et al. "Interface mechanics of porous titanium implants." Journal of Biomedical Materials Research Part A 15.1 (1981): 73-82.
  • 38. Kohal RJ, Att W, Baechle M, Butz F. Ceramic abutments and ceramic oral implants. An update. Periodontology 2000 2008; 47:224–43.
  • 39. Sundh A, Molin M, Sjögren G. Fracture resistance of yttrium oxide partially stabilized zirconia all-ceramic bridges after veneering and mechanical fatigue testing. Dent Mater 2005;21(5):47682.
  • 40. Lütjering G, Williams JC. Titanium. Heidelberg: Springer-Verlag; 2007.
  • 41. Wiria, Florencia Edith, et al. "Printing of titanium implant prototype." Materials & Design 31 (2010): S101-S105.
  • 42. Xiong, Yaoyang, Chao Qian, and Jian Sun. "Fabrication of porous titanium implants by three-dimensional printing and sintering at different temperatures." Dental materials journal 31.5 (2012): 815-820.
  • 43. Schiefer H, Bram M, Buchkremer HP, Stöver D. Mechanical examinations on dental implants with porous titanium coating. J Mater Sci Mater Med 2009; 20: 1763-1770.
  • 44. El-Hajje, Aouni, et al. "Physical and mechanical characterization of 3D-printed porous titanium for biomedical applications." Journal of Materials Science: Materials in Medicine 25.11 (2014): 2471-2480.
  • 45. Tunchel, Samy, et al. "3D printing/additive manufacturing single titanium dental implants: a prospective multicenter study with 3 years of follow-up." International journal of dentistry 2016 (2016).
  • 46. Maleksaeedi, Saeed, et al. "Toward 3D printed bioactive titanium scaffolds with bimodal pore size distribution for bone ingrowth." Procedia CIRP 5 (2013): 158-163.

TITANIUM IMPLANT FOR DENTAL APPLICATIONS USING 3D PRINTING TECHNOLOGY

Year 2020, , 171 - 177, 29.08.2020
https://doi.org/10.46519/ij3dptdi.673652

Abstract

ABSTRACT
The generic name was given to the production technology in which 3D objects are created by the sequential arrangement of material layers, also known as rapid prototyping or 3D printing. 3D printing technology has made it possible for many technological breakthroughs in medical and mass reproduction fields, especially in materials that these printers function. Recent developments have shown that titanium is allowed to be used as a building material in the 3D printing process. Titanium is a phenomenon in biomedical applications due to its superior dynamic and static properties. The unique anatomy of the orbital in living tissue applications of titanium implants, biologic inconveniences such as emerging surgical approach difficulties and inadequate modularity between bone and implants are predicted to be solved by the commitment of 3D Production to produce complex biomedical devices according to computer design using patient-specific anatomical data. In this study, it is aimed to give brief information about 3D printing technology and its advantages and to give information about the effects and advantages of 3D printing technology on titanium implants.

References

  • 1. Mishra, MrsSushree. "3D Printing Technology." ScienceHorizon 43 (2014).
  • 2. Ertugrul, I., Akkus, N., Yuce, H., Fabrication of bidirectional electrothermal microactuator by two-photon polymerization. Materials and Technology. Vol. 53, Issue 5, Pages 665-670, 2019.
  • 3. Lifton, V. A., Lifton, G., & Simon, S. (2014). Options for additive rapid prototyping methods (3D printing) in MEMS technology. Rapid Prototyping Journal, 20(5), 403-412.
  • 4. Lessing, J., Glavan, A. C., Walker, S. B., Keplinger, C., Lewis, J. A., & Whitesides, G. M. (2014). Inkjet Printing of conductive inks with high lateral resolution on omniphobic “Rf paper” for paper‐based electronics and MEMS. Advanced Materials, 26(27), 4677-4682.
  • 5. Ertugrul, I., Ülkir, O. (2020). MEMS Tabanlı Mikro Rezonatörün Tasarımı ve Analizi. Avrupa Bilim ve Teknoloji Dergisi , (18) , 25-29. DOI: 10.31590/ejosat.676368
  • 6. Ülkir, O., Ertugrul, I. (2020). Mikro Kiriş Uzunluğu Değişiminin Deformasyona Etkisinin Araştırılması. Avrupa Bilim ve Teknoloji Dergisi , (18) , 136-141. DOI: 10.31590/ejosat.672464
  • 7. Ertugrul, I., Akkus, N., Aygul, E., Yalcinkaya, S., Ertunç, H. (2020). MEMS Fabrication using PµSL Technique Based 3D Printer. International Journal of 3D Printing Technologies and Digital Industry, 4 (1), 38-43.
  • 8. Jones, H. B., Moore, C. P., Best, A. D., Bubendorfer, A. J., & Glasson, N. D. (2020, February). Rapid prototyping MEMS with laminated resin printing. In Emerging Digital Micromirror Device Based Systems and Applications XII (Vol. 11294, p. 1129407). International Society for Optics and Photonics.
  • 9. Ertugrul, I., Akkus, N., Aygül, E., Yalcinkaya, S. "Mems Fabrication Using 2PP Technique Based 3D Printer". International Journal of 3D Printing Technologies and Digital Industry 4 (2020): 12-17
  • 10. Blachowicz, T., & Ehrmann, A. (2020). 3D Printed MEMS Technology—Recent Developments and Applications. Micromachines, 11(4), 434.
  • 11. Ertugrul, I., Aygul, E., Yalcinkaya, S., Ulkir, O. (2019). “Analysis of MEMS Based Accelerometer Sensor via Comsol” 5nd International Congress on Engineering, Architecture and Design, 1(5).
  • 12. Barnett, Christopher. 3D printing: the next industrial revolution. Nottingham: Explaining TheFuture.com, 2013.
  • 13. Bogue, Robert. "3D printing: the dawn of a new era in manufacturing?" Assembly Automation 33.4 (2013):307-311.
  • 14. Campbell, Thomas, et al. "Could 3D printing change the world." Technologies, Potential, and Implications of AdditiveManufacturing, AtlanticCouncil, Washington, DC (2011).
  • 15. https://www.atlasobscura.com/articles/the-utopian-promise-of-reprap-the-3d-printer-that-canalmost-printitself
  • 16. Chia, Helena N., et al. 3D Printing in Medicine. Scientific Research Publishing, 2016.
  • 17. Schubert, Carl, Mark C. Van Langeveld, and carry A. Donoso."Innovations in 3D printing: a 3D overview from optics to organs." British Journal of Ophthalmology 98.2 (2014): 159-161.
  • 18. Pasinli, Ahmet. "Biyomedikal uygulamalarda kullanılan biyomalzemeler." Makine Teknolojileri Elektronik Dergisi 4 (2004): 25-34.
  • 19. Kasemo, B. "Biocompatibility of titanium implants: surface science aspects." The Journal of prosthetic dentistry 49.6 (1983): 832-837.
  • 20. Naomi, Mitsuo. "Mechanical properties of biomedical titanium alloys." Materials Science and Engineering: A 243.1 (1998): 231-236.
  • 21. Brunette, Donald M., et al., eds. Titanium in medicine: MaterialScience, surface science, engineering, biological responses, and medical applications. Springer Science & Business Media, 2012.
  • 22. Wiria, Florencia Edith, et al. "Printing of titanium implant prototype." Materials & Design 31 (2010): S101-S105.
  • 23. Dawood, A., et al. "3D printing in dentistry." British dental journal 219.11 (2015): 521-529.
  • 24. http://www.mdpi.com/journal/materials/special_issues/3D_Printing_Biomedical_Engineering
  • 25. Liu Q, Leu MC, Schmitt S M. Rapid prototyping in dentistry: technology and application. Int JAdvManufTechnol 2006; 29: 317–335.
  • 26. Venkatesh K V, Nandini V V. Direct metal laser-sintering: a digitized metal casting technology. JIndianProsthodontSoc 2013; 13: 389–392.
  • 27. Rengier, Fabian, et al. "3D printing based on imaging data: a review of medical applications." International journal of computer-assisted radiology and surgery 5.4 (2010): 335-341.
  • 28. Kayacan, M.C., Delikanlı, Y. E., Duman, B., & Özsoy, K. Ti6Al4v toz alaşımı kullanılarak SLS ile üretilen geçişli (değişken) gözenekli numunelerin mekanik özelliklerinin incelenmesi. Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, Vol. 33, Sayı 1, Sayfa 127-143,2018.
  • 29. Wagner J, Baack B, Brown G, Kelly J (2004) Rapid 3-dimensional prototyping for surgical repair of the maxilla of a cial fracture: a technical note. J Oral Maxillofac Surg 62:898–901.
  • 30. Kayacan, M. Y., Özsoy, K., Duman, B., Yilmaz, N., & Kayacan, M. C. A study on elimination of failures resulting from layering and internal stresses in Powder Bed Fusion (PBF) additive manufacturing. Materials and Manufacturing Processes, Vol 34, Issue 13, Pages 1467-1475,2019.
  • 31. Cima MJ, Sachs E, Cima LG, Yoo J, Khanuja S, Borland SW, et al. Computer derived microstructures by 3D printing: bio-and structural materials. SolidFreeformFabrSympProc: DTIC Document; 1994. p. 181-90.
  • 32. Wu BM, Borland SW, Giordano RA, Cima LG, Sachs EM, Cima MJ. Solid free-form fabrication of drug delivery devices. J Control Release. 1996; 40:77–87.
  • 33. Billiet T, Vandenhaute M, Schelfhout J, Van Vlierberghe S, Dubruel P. A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials. 2012; 33:602041.
  • 34. Chia, Helena N., and Benjamin M. Wu. "Recent advances in 3D printing of biomaterials." Journal of biological engineering9.1 (2015): 4.
  • 35. Uzun, İ. H, and Bayındır F., "Titanium and its properties in dental applications." Journal of Atatürk University Faculty of Dentistry, 2010.3 (2010).
  • 36. Tada, Shinichiro, et al. "Influence of implant design and bone quality on stress/strain distribution in bone around implants: a 3-dimensional finite element analysis." International Journal of Oral & Maxillofacial Implants 18.3 (2003).
  • 37. Clemow, A. J. T., et al. "Interface mechanics of porous titanium implants." Journal of Biomedical Materials Research Part A 15.1 (1981): 73-82.
  • 38. Kohal RJ, Att W, Baechle M, Butz F. Ceramic abutments and ceramic oral implants. An update. Periodontology 2000 2008; 47:224–43.
  • 39. Sundh A, Molin M, Sjögren G. Fracture resistance of yttrium oxide partially stabilized zirconia all-ceramic bridges after veneering and mechanical fatigue testing. Dent Mater 2005;21(5):47682.
  • 40. Lütjering G, Williams JC. Titanium. Heidelberg: Springer-Verlag; 2007.
  • 41. Wiria, Florencia Edith, et al. "Printing of titanium implant prototype." Materials & Design 31 (2010): S101-S105.
  • 42. Xiong, Yaoyang, Chao Qian, and Jian Sun. "Fabrication of porous titanium implants by three-dimensional printing and sintering at different temperatures." Dental materials journal 31.5 (2012): 815-820.
  • 43. Schiefer H, Bram M, Buchkremer HP, Stöver D. Mechanical examinations on dental implants with porous titanium coating. J Mater Sci Mater Med 2009; 20: 1763-1770.
  • 44. El-Hajje, Aouni, et al. "Physical and mechanical characterization of 3D-printed porous titanium for biomedical applications." Journal of Materials Science: Materials in Medicine 25.11 (2014): 2471-2480.
  • 45. Tunchel, Samy, et al. "3D printing/additive manufacturing single titanium dental implants: a prospective multicenter study with 3 years of follow-up." International journal of dentistry 2016 (2016).
  • 46. Maleksaeedi, Saeed, et al. "Toward 3D printed bioactive titanium scaffolds with bimodal pore size distribution for bone ingrowth." Procedia CIRP 5 (2013): 158-163.
There are 46 citations in total.

Details

Primary Language English
Subjects Biomaterial
Journal Section Review Articles
Authors

Senai Yalcinkaya 0000-0001-7076-7766

Ebuzer Aygül 0000-0003-0930-3975

Yusuf Şahin 0000-0001-6495-5701

Publication Date August 29, 2020
Submission Date January 12, 2020
Published in Issue Year 2020

Cite

APA Yalcinkaya, S., Aygül, E., & Şahin, Y. (2020). TITANIUM IMPLANT FOR DENTAL APPLICATIONS USING 3D PRINTING TECHNOLOGY. International Journal of 3D Printing Technologies and Digital Industry, 4(2), 171-177. https://doi.org/10.46519/ij3dptdi.673652
AMA Yalcinkaya S, Aygül E, Şahin Y. TITANIUM IMPLANT FOR DENTAL APPLICATIONS USING 3D PRINTING TECHNOLOGY. IJ3DPTDI. August 2020;4(2):171-177. doi:10.46519/ij3dptdi.673652
Chicago Yalcinkaya, Senai, Ebuzer Aygül, and Yusuf Şahin. “TITANIUM IMPLANT FOR DENTAL APPLICATIONS USING 3D PRINTING TECHNOLOGY”. International Journal of 3D Printing Technologies and Digital Industry 4, no. 2 (August 2020): 171-77. https://doi.org/10.46519/ij3dptdi.673652.
EndNote Yalcinkaya S, Aygül E, Şahin Y (August 1, 2020) TITANIUM IMPLANT FOR DENTAL APPLICATIONS USING 3D PRINTING TECHNOLOGY. International Journal of 3D Printing Technologies and Digital Industry 4 2 171–177.
IEEE S. Yalcinkaya, E. Aygül, and Y. Şahin, “TITANIUM IMPLANT FOR DENTAL APPLICATIONS USING 3D PRINTING TECHNOLOGY”, IJ3DPTDI, vol. 4, no. 2, pp. 171–177, 2020, doi: 10.46519/ij3dptdi.673652.
ISNAD Yalcinkaya, Senai et al. “TITANIUM IMPLANT FOR DENTAL APPLICATIONS USING 3D PRINTING TECHNOLOGY”. International Journal of 3D Printing Technologies and Digital Industry 4/2 (August 2020), 171-177. https://doi.org/10.46519/ij3dptdi.673652.
JAMA Yalcinkaya S, Aygül E, Şahin Y. TITANIUM IMPLANT FOR DENTAL APPLICATIONS USING 3D PRINTING TECHNOLOGY. IJ3DPTDI. 2020;4:171–177.
MLA Yalcinkaya, Senai et al. “TITANIUM IMPLANT FOR DENTAL APPLICATIONS USING 3D PRINTING TECHNOLOGY”. International Journal of 3D Printing Technologies and Digital Industry, vol. 4, no. 2, 2020, pp. 171-7, doi:10.46519/ij3dptdi.673652.
Vancouver Yalcinkaya S, Aygül E, Şahin Y. TITANIUM IMPLANT FOR DENTAL APPLICATIONS USING 3D PRINTING TECHNOLOGY. IJ3DPTDI. 2020;4(2):171-7.

 download

Uluslararası 3B Yazıcı Teknolojileri ve Dijital Endüstri Dergisi Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.