Review
BibTex RIS Cite

DOKU MÜHENDİSLİĞİNDE 3 BOYUTLU BİYO-BASKI İÇİN BİYOFONKSİYONEL MÜREKKEPLER

Year 2020, , 285 - 294, 31.12.2020
https://doi.org/10.46519/ij3dptdi.795922

Abstract

Günümüzde doku mühendisliği ve rejeneratif tıpta en çok kullanılan yöntemlerden biri 3 boyutlu biyo baskı yöntemidir. 3 boyutlu biyobaskı baskı, yaralı veya hastalıklı doku ve organların yerini alacak doku ve organ yapılarının yapımında çeşitli uygulamalara sahip gelişmekte olan bir teknolojidir. Bu yöntemde hücreler, büyüme faktörleri ve biyomalzemeler birleştirilir ve 3D baskı teknikleri kullanılarak yapay dokular ve organlar üretilir. 3 boyutlu baskının en önemli bileşenlerinden biri biyofonksiyonel mürekkeplerdir. Biyofonksiyonel mürekkepler, 3 boyutlu biyo baskı işleminde kullanılan, biyolojik olarak yazdırılabilir malzemelerdir. Üretilecek organ ve dokunun özellikleri ve basım tekniği göz önünde bulundurarak uygun biyomürekkebi seçmek oldukça önemlidir. Farklı biyofonksiyonel mürekkep çeşitleri arasından uygun özelliklere sahip biyofonksiyonel mürekkep çeşidini seçmek basılan ürünün başarı şansını artırır. Bu derlemede biyoyazıcı çeşitlerine, uygun biyoyazıcı seçmek için gereken kriterlere, biyofonksiyonel mürekkeplerin özelliklerine, seçim kriterlerine, biyofonksiyonel mürekkep çeşitlerine ve doku mühendisliğinde kullanıldığı alanlara yer verilmiştir.

References

  • 1. Hacıoğlu A., Yılmazer H. , Ustundag C.B.,“3D Printing for Tissue Engineering Applications”, Journal of Polytechnic, 2018;21(1):221-227,2017.
  • 2. Mobaraki M., Ghaffari M., Yazdanpanah A., Bioinks and Bioprinting: A Focused Review, Bioprinting 2020.
  • 3. Gopinathan J., Noh I. , Recent trends in bioinks for 3D printing, Biomaterial Research 22:11 ; (2018).
  • 4. Hospodiuk M, Dey M, Sosnoski D, Ozbolat IT. The Bioink: A Comprehensive Review on Bioprintable Materials. Biotechnol Adv. 2017.
  • 5. M. Lei, X. Wang, Biodegradable polymers and stem cells for bioprinting, Molecules 21 (5) 539 (2016).
  • 6. Brett D, A Review of Collagen and Collagen based Wound Dressings ,WOUNDS ; 20(12):347-356, 2015.
  • 7. Mori H, Shimizu K, Hara M. Dynamic viscoelastic properties of collagen gels with high mechanical strength. Mater Sci Eng C. ; 33(6):3230–6, 2013.
  • 8. Smith CM, Stone AL, Parkhill RL, Stewart RL, Simpkins MW, Kachurin AM, Warren WL, Williams SK. Three-dimensional bioassembly tool for generating viable tissue-engineered constructs. Tissue Eng.; 10(9–10):1566–76, 2004.
  • 9. Osidak EO, Kozhukhov VI, Osidak MS, et al., Collagen as Bioink for Bioprinting: A Comprehensive Review. Int J Bioprint, 6(3): 270, 2020.
  • 10. Albanna M, Binder KW, Murphy SV, et al., 2019, In Situ bioprinting of autologous skin cells accelerates wound healing of extensive excisional full-thickness wounds. Sci Bioprinting with collagen 26 International Journal of Bioprinting , Volume 6, Issue 3 Rep, 9:1856 , 2020.
  • 11. Yang X, Lu Z, Wu H, Li W, Zheng L, Zhao J. Collagen-alginate as bioink for three-dimensional (3D) cell printing based cartilage tissue engineering, Mater. Sci. Eng. C., 2018.
  • 12. Tezcan, F., ‘’ALJİNAT/ KİL BİYOPOLİMER NANOKOMPOZİT FİLMLERİN ELDESİ VE KARAKTERİZASYONU’’, Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi, İstanbul, 2008.
  • 13. Axpe E, Oyen ML. Applications of alginate-based bioinks in 3D bioprinting. Int J Mol Sci.; 17(12):1976; 2016.
  • 14. Uslu B., Arbak S., ‘’Doku Mühendisliğinde Kitozanın Kullanım Alanları’’, Acıbadem Üniversitesi Sağlık Bilimleri Dergisi Cilt: 1,Sayı: 3, Sayfa 128-135, 2010.
  • 15. Şendemir Ürkmez A., Seçkin U., Görgün C., Uyanıkgil Y., Deri Doku Mühendisliği Amaçlı Üç Boyutlu Biyobaskı ve Keratinosit Kültürü, Dicle Tıp Dergisi / Dicle Medical Journal 45 (1) : 9 – 18 ; (2018).
  • 16. Demirtaş T., Irmak G., Gümüşderelioğlu M., A bioprintable form of chitosan hydrogel for bone tissue engineering, Biofabrication, Volume 9, Number 3, 2017.
  • 17. C.-M. Lee, S.-W. Yang, S.-C. Jung, B.-H. Kim, Oxygen plasma treatment on 3Dprinted chitosan/gelatin/hydroxyapatite scaffolds for bone tissue engineering, J. Nanosci. Nanotechnol. 17 (4) 2747–2750 ; (2017).
  • 18. He Y., Derakhshanfar S., Zhong W, Li B, Lu F., Xing M., Li X., Characterization and Application of Carboxymethyl Chitosan-Based Bioink in Cartilage Tissue Engineering, Journal of Nanomaterials / 2020
  • 19. Axpe E, Oyen M.L., Applications of Alginate-Based Bioinks in 3D Bioprinting,Int J Mol Sci ; 25;17(12):1976 ; (2016). 20. Kursad Turksen , Bioprinting in Regenerative Medicine ,Human Press, (2015)
  • 21. Murat Güvendiren, 3D Bioprinting in Medicine Technologies, Bioinks, and Applications, Springer, (2019)
  • 22. Lijie Grace Zhang , John P. Fisher ,Kam W. Leong, 3D Bioprinting and Nanotechnology in Tissue Engineering and Regenerative Medicine,Elsevier, , (2015)
  • 23. R.A. Shirwaiker, M.F.Purser, R.A. Wysk, Scaffolding hydrogels for rapid prototyping based tissue engineering, Rapid Prototyping of Biomaterials, Principles and Applications, Pages 176-200, 2014.
  • 24. Shen Ji S., Guvendiren M, Recent Advances in Bioink Design for 3D Bioprinting of Tissues and Organs, Front Bioeng Biotechnol.; 5: 23; 2017.
  • 25. Gungor-Ozkerim P.S., Inci İ., Zhang Y.S., Khademhosseini A., Dokmeci M.R., Bioinks for 3D bioprinting: an overview, Biomater Sci. 01; 6(5): 915–946; 2018.
  • 26. Chawla S., Midha S., Sharma A., Ghosh S., Silk-Based Bioinks for 3D Bioprinting, Adv Healthc Mater, 7(8):e1701204 ; 2018.
Year 2020, , 285 - 294, 31.12.2020
https://doi.org/10.46519/ij3dptdi.795922

Abstract

References

  • 1. Hacıoğlu A., Yılmazer H. , Ustundag C.B.,“3D Printing for Tissue Engineering Applications”, Journal of Polytechnic, 2018;21(1):221-227,2017.
  • 2. Mobaraki M., Ghaffari M., Yazdanpanah A., Bioinks and Bioprinting: A Focused Review, Bioprinting 2020.
  • 3. Gopinathan J., Noh I. , Recent trends in bioinks for 3D printing, Biomaterial Research 22:11 ; (2018).
  • 4. Hospodiuk M, Dey M, Sosnoski D, Ozbolat IT. The Bioink: A Comprehensive Review on Bioprintable Materials. Biotechnol Adv. 2017.
  • 5. M. Lei, X. Wang, Biodegradable polymers and stem cells for bioprinting, Molecules 21 (5) 539 (2016).
  • 6. Brett D, A Review of Collagen and Collagen based Wound Dressings ,WOUNDS ; 20(12):347-356, 2015.
  • 7. Mori H, Shimizu K, Hara M. Dynamic viscoelastic properties of collagen gels with high mechanical strength. Mater Sci Eng C. ; 33(6):3230–6, 2013.
  • 8. Smith CM, Stone AL, Parkhill RL, Stewart RL, Simpkins MW, Kachurin AM, Warren WL, Williams SK. Three-dimensional bioassembly tool for generating viable tissue-engineered constructs. Tissue Eng.; 10(9–10):1566–76, 2004.
  • 9. Osidak EO, Kozhukhov VI, Osidak MS, et al., Collagen as Bioink for Bioprinting: A Comprehensive Review. Int J Bioprint, 6(3): 270, 2020.
  • 10. Albanna M, Binder KW, Murphy SV, et al., 2019, In Situ bioprinting of autologous skin cells accelerates wound healing of extensive excisional full-thickness wounds. Sci Bioprinting with collagen 26 International Journal of Bioprinting , Volume 6, Issue 3 Rep, 9:1856 , 2020.
  • 11. Yang X, Lu Z, Wu H, Li W, Zheng L, Zhao J. Collagen-alginate as bioink for three-dimensional (3D) cell printing based cartilage tissue engineering, Mater. Sci. Eng. C., 2018.
  • 12. Tezcan, F., ‘’ALJİNAT/ KİL BİYOPOLİMER NANOKOMPOZİT FİLMLERİN ELDESİ VE KARAKTERİZASYONU’’, Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi, İstanbul, 2008.
  • 13. Axpe E, Oyen ML. Applications of alginate-based bioinks in 3D bioprinting. Int J Mol Sci.; 17(12):1976; 2016.
  • 14. Uslu B., Arbak S., ‘’Doku Mühendisliğinde Kitozanın Kullanım Alanları’’, Acıbadem Üniversitesi Sağlık Bilimleri Dergisi Cilt: 1,Sayı: 3, Sayfa 128-135, 2010.
  • 15. Şendemir Ürkmez A., Seçkin U., Görgün C., Uyanıkgil Y., Deri Doku Mühendisliği Amaçlı Üç Boyutlu Biyobaskı ve Keratinosit Kültürü, Dicle Tıp Dergisi / Dicle Medical Journal 45 (1) : 9 – 18 ; (2018).
  • 16. Demirtaş T., Irmak G., Gümüşderelioğlu M., A bioprintable form of chitosan hydrogel for bone tissue engineering, Biofabrication, Volume 9, Number 3, 2017.
  • 17. C.-M. Lee, S.-W. Yang, S.-C. Jung, B.-H. Kim, Oxygen plasma treatment on 3Dprinted chitosan/gelatin/hydroxyapatite scaffolds for bone tissue engineering, J. Nanosci. Nanotechnol. 17 (4) 2747–2750 ; (2017).
  • 18. He Y., Derakhshanfar S., Zhong W, Li B, Lu F., Xing M., Li X., Characterization and Application of Carboxymethyl Chitosan-Based Bioink in Cartilage Tissue Engineering, Journal of Nanomaterials / 2020
  • 19. Axpe E, Oyen M.L., Applications of Alginate-Based Bioinks in 3D Bioprinting,Int J Mol Sci ; 25;17(12):1976 ; (2016). 20. Kursad Turksen , Bioprinting in Regenerative Medicine ,Human Press, (2015)
  • 21. Murat Güvendiren, 3D Bioprinting in Medicine Technologies, Bioinks, and Applications, Springer, (2019)
  • 22. Lijie Grace Zhang , John P. Fisher ,Kam W. Leong, 3D Bioprinting and Nanotechnology in Tissue Engineering and Regenerative Medicine,Elsevier, , (2015)
  • 23. R.A. Shirwaiker, M.F.Purser, R.A. Wysk, Scaffolding hydrogels for rapid prototyping based tissue engineering, Rapid Prototyping of Biomaterials, Principles and Applications, Pages 176-200, 2014.
  • 24. Shen Ji S., Guvendiren M, Recent Advances in Bioink Design for 3D Bioprinting of Tissues and Organs, Front Bioeng Biotechnol.; 5: 23; 2017.
  • 25. Gungor-Ozkerim P.S., Inci İ., Zhang Y.S., Khademhosseini A., Dokmeci M.R., Bioinks for 3D bioprinting: an overview, Biomater Sci. 01; 6(5): 915–946; 2018.
  • 26. Chawla S., Midha S., Sharma A., Ghosh S., Silk-Based Bioinks for 3D Bioprinting, Adv Healthc Mater, 7(8):e1701204 ; 2018.
There are 25 citations in total.

Details

Primary Language Turkish
Subjects Biomaterial
Journal Section Review Articles
Authors

Hilal Akkuş This is me 0000-0002-2321-9393

Büşra Günaydın This is me 0000-0002-2669-7024

Cem Ustundag 0000-0002-4439-0878

Publication Date December 31, 2020
Submission Date September 16, 2020
Published in Issue Year 2020

Cite

APA Akkuş, H., Günaydın, B., & Ustundag, C. (2020). DOKU MÜHENDİSLİĞİNDE 3 BOYUTLU BİYO-BASKI İÇİN BİYOFONKSİYONEL MÜREKKEPLER. International Journal of 3D Printing Technologies and Digital Industry, 4(3), 285-294. https://doi.org/10.46519/ij3dptdi.795922
AMA Akkuş H, Günaydın B, Ustundag C. DOKU MÜHENDİSLİĞİNDE 3 BOYUTLU BİYO-BASKI İÇİN BİYOFONKSİYONEL MÜREKKEPLER. IJ3DPTDI. December 2020;4(3):285-294. doi:10.46519/ij3dptdi.795922
Chicago Akkuş, Hilal, Büşra Günaydın, and Cem Ustundag. “DOKU MÜHENDİSLİĞİNDE 3 BOYUTLU BİYO-BASKI İÇİN BİYOFONKSİYONEL MÜREKKEPLER”. International Journal of 3D Printing Technologies and Digital Industry 4, no. 3 (December 2020): 285-94. https://doi.org/10.46519/ij3dptdi.795922.
EndNote Akkuş H, Günaydın B, Ustundag C (December 1, 2020) DOKU MÜHENDİSLİĞİNDE 3 BOYUTLU BİYO-BASKI İÇİN BİYOFONKSİYONEL MÜREKKEPLER. International Journal of 3D Printing Technologies and Digital Industry 4 3 285–294.
IEEE H. Akkuş, B. Günaydın, and C. Ustundag, “DOKU MÜHENDİSLİĞİNDE 3 BOYUTLU BİYO-BASKI İÇİN BİYOFONKSİYONEL MÜREKKEPLER”, IJ3DPTDI, vol. 4, no. 3, pp. 285–294, 2020, doi: 10.46519/ij3dptdi.795922.
ISNAD Akkuş, Hilal et al. “DOKU MÜHENDİSLİĞİNDE 3 BOYUTLU BİYO-BASKI İÇİN BİYOFONKSİYONEL MÜREKKEPLER”. International Journal of 3D Printing Technologies and Digital Industry 4/3 (December 2020), 285-294. https://doi.org/10.46519/ij3dptdi.795922.
JAMA Akkuş H, Günaydın B, Ustundag C. DOKU MÜHENDİSLİĞİNDE 3 BOYUTLU BİYO-BASKI İÇİN BİYOFONKSİYONEL MÜREKKEPLER. IJ3DPTDI. 2020;4:285–294.
MLA Akkuş, Hilal et al. “DOKU MÜHENDİSLİĞİNDE 3 BOYUTLU BİYO-BASKI İÇİN BİYOFONKSİYONEL MÜREKKEPLER”. International Journal of 3D Printing Technologies and Digital Industry, vol. 4, no. 3, 2020, pp. 285-94, doi:10.46519/ij3dptdi.795922.
Vancouver Akkuş H, Günaydın B, Ustundag C. DOKU MÜHENDİSLİĞİNDE 3 BOYUTLU BİYO-BASKI İÇİN BİYOFONKSİYONEL MÜREKKEPLER. IJ3DPTDI. 2020;4(3):285-94.

 download

Uluslararası 3B Yazıcı Teknolojileri ve Dijital Endüstri Dergisi Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.