Research Article
BibTex RIS Cite

3B YAZICIDA ÜRETİLEN DÜZ DİŞLİ ÇARKLARIN RTV2 SİLİKONU KULLANILARAK ÇOĞALTILMASI

Year 2021, , 34 - 42, 30.04.2021
https://doi.org/10.46519/ij3dptdi.810269

Abstract

Eklemeli üretim olarak da bilinen üç boyutlu yazdırma, bilgisayar kontrolü altında bir nesne oluşturmak için bir nesnenin ardışık katmanlarının oluşturulduğu üç boyutlu bir nesneyi sentezlemek için kullanılan süreçleri ifade eder. Nesneler neredeyse her şekil veya geometriyi oluşturabilir. Başka bir elektronik veri kaynağından veya 3B modelden dijital model verileri kullanılarak oluşturulur. Bu çalışmada, üç boyutlu yazıcıda üretilen düz dişli çarkların silikon kalıplama tekniği ile kalıbı alınarak oluşturulmuş bir kalıba epoksi dökülerek bir parçanın çoğaltılması işlemi yapılmıştır. Tüm parçaların boyutsal doğruluğu, Bilgisayar Destekli Tasarım verileri, üç boyutlu yapılan parçalar ve silikon kalıplar kullanılarak çoğaltılan parçalar için karşılaştırma yapılmıştır. Deneysel çalışmalar ile başarılı imalat işlemleri gerçekleştirilmiştir. Diş üstü çapının %2,5 diş dibi çapının %5 ölçü farklılığı ile imal edilebildiği belirlenmiştir. Ölçü toleranslarının ortalama %5’e kadar müsaade edildiği imalat işlemlerinde ve restorasyon çalışmalarında başarılı bir şekilde kullanılabileceği ortaya konulmuştur. Profesyonel makine-teçhizat ve personele ihtiyaç duymadan gerçekleştirilebilmesi, çok sayıda imalat ihtiyaçlarını karşılayabildiği gibi bir defa kullanılabilecek tamir işlemleri için de uygulanabilir en ucuz metot olduğu belirlenmiştir.

Supporting Institution

Kastamonu Üniversitesi

Project Number

KÜ-BAP01/2019-31

Thanks

Kastamonu Üniversitesi, Bilimsel Araştırmalar Koordinatörlüğü’ne teşekkür ederiz.

References

  • 1. Ian G., Rosen D.W., and Stucker B. Additive manufacturing technologies. Vol. 238. New York: Springer. 2010.
  • 2. Kruth J-P., Leu M-C., and Nakagawa T. Progress in additive manufacturing and rapid prototyping. CIRP Annals-Manufacturing Technology Vol. 47, Issue 2, Pages 525-540, 1998.
  • 3. Kaufui W.V., and Hernandez A. "A review of additive manufacturing." ISRN Mechanical Engineering. 2012.
  • 4. Samuel H.H., et al. Additive manufacturing and its societal impact: a literature review. The International Journal of Advanced Manufacturing Technology. Vol. 67, Issue 5-8, Pages 1191-1203, 2013.
  • 5. Sungil C., et al. Evaluation of micro-replication technology using silicone rubber molds and its applications. International Journal of Machine Tools and Manufacture. Vol. 43, Issue 13, Pages 1337-1345, 2003.
  • 6. Fellner S., et al. Mechanical properties of silicones for MEMS. Journal of Micromechanics and Microengineering. Vol. 18, Issue 6, Pages 065-068, 2008.
  • 7. Prasad Y.KDV, and Hock T.S. Statistical analysis on accuracy of wax patterns used in investment casting process. Journal of materials processing technology. Vol. 138. Issue 1, Pages 75-81, 2003.
  • 8. Ammen C.W. Lost Wax Investment Casting, Tab Books, USA, 2007.
  • 9. Tang, Y., et al. Micro-mould fabrication for a micro-gear via vacuum casting. Journal of materials processing technology, Vol. 192, Pages 334-339, 2007.
  • 10. Chung, S., et al. Rapid fabrication of aluminum shoe mold using vacuum sealed casting process. Journal of materials processing technology, Vol .142, Issue 2, Pages 326-333, 2003.
  • 11. Çalışkan, Ö. Umut, ve Durgun, İ. "Silikon kalıplama üretim teknolojisinin otomotiv ürün geliştirme sürecindeki uygulamaları. 12. Otomotiv ve Üretim Teknolojileri Sempozyumu, 13-14 Mayıs 2011, Bursa.
  • 12. Zmarzły, Paweł, Damian Gogolewski, and Tomasz Kozior. "Design guidelines for plastic casting using 3D printing." Journal of Engineered Fibers and Fabrics. Vol. 15, 2020.
  • 13. Chen, Dongzhi, et al. "Synthesis and characterization of novel room temperature vulcanized (RTV) silicone rubbers using Vinyl-POSS derivatives as cross linking agents." Polymer. Vol. 51, Issue 17, Pages 3867-3878, 2010.
  • 14. Christoforo, André Luis, et al. "Numerical Study of Finite Fracture Growth in an Epoxy Resin." International Journal of Materials Engineering. Vol. 6, Pages 15-21, 2016.
  • 15. İnternet: Dolidworks resmi web sitesi, Deneme sürümü, https://my.solidworks.com/trysolidworks?&lang=tr&utm_medium=cpc&utm_source=google&utm_campaign=202001_glo_ps_sea_tr_XOP6889_labl_swopt_eme_tr&mktid=10381&gclid=Cj0KCQiAyoeCBhCTARIsAOfpKxh_vWf7jl3RU6GeHhJxmeI_R1h_SwSjOpffRnsmt7kbzxqOv14OwsQaAjd0EALw_wcB, Ocak 21, 2021.
  • 16. Bruckner, Tim, Zach Oat, and Ruben Procopio. Pop Sculpture: How to Create Action Figures & Collectible Statues. Watson-Guptill Publications, 2010.

REPLACEMENT OF FLAT GEAR WHEELS MADE IN A 3D PRINTER USING RTV2 SILICONE

Year 2021, , 34 - 42, 30.04.2021
https://doi.org/10.46519/ij3dptdi.810269

Abstract

Three-dimensional printing, also known as additive manufacturing, refers to the processes used to synthesize a three-dimensional object in which successive layers of an object are created to create an object under computer control. Objects can create almost any shape or geometry. It is created using digital model data from another electronic data source or 3D model. In this study, the process of reproducing a part is made by pouring epoxy into a mold formed by taking the mold of spur gear wheels produced in a 3D printer with the silicone molding technique. A comparison was made for dimensional accuracy of all parts, Computer Aided Design data, three-dimensional parts and parts reproduced using silicone molds. Successful manufacturing processes have been carried out with experimental studies. It has been determined that the diameter of the top of the tooth can be manufactured with a measurement difference of 2.5% and 5% of the root diameter. It has been demonstrated that it can be used successfully in manufacturing processes and restoration works where measurement tolerances are allowed up to 5% on average. It has been determined that it is the cheapest method applicable to repair operations that can be used once, as it can be realized without the need for professional machinery-equipment and personnel.

Project Number

KÜ-BAP01/2019-31

References

  • 1. Ian G., Rosen D.W., and Stucker B. Additive manufacturing technologies. Vol. 238. New York: Springer. 2010.
  • 2. Kruth J-P., Leu M-C., and Nakagawa T. Progress in additive manufacturing and rapid prototyping. CIRP Annals-Manufacturing Technology Vol. 47, Issue 2, Pages 525-540, 1998.
  • 3. Kaufui W.V., and Hernandez A. "A review of additive manufacturing." ISRN Mechanical Engineering. 2012.
  • 4. Samuel H.H., et al. Additive manufacturing and its societal impact: a literature review. The International Journal of Advanced Manufacturing Technology. Vol. 67, Issue 5-8, Pages 1191-1203, 2013.
  • 5. Sungil C., et al. Evaluation of micro-replication technology using silicone rubber molds and its applications. International Journal of Machine Tools and Manufacture. Vol. 43, Issue 13, Pages 1337-1345, 2003.
  • 6. Fellner S., et al. Mechanical properties of silicones for MEMS. Journal of Micromechanics and Microengineering. Vol. 18, Issue 6, Pages 065-068, 2008.
  • 7. Prasad Y.KDV, and Hock T.S. Statistical analysis on accuracy of wax patterns used in investment casting process. Journal of materials processing technology. Vol. 138. Issue 1, Pages 75-81, 2003.
  • 8. Ammen C.W. Lost Wax Investment Casting, Tab Books, USA, 2007.
  • 9. Tang, Y., et al. Micro-mould fabrication for a micro-gear via vacuum casting. Journal of materials processing technology, Vol. 192, Pages 334-339, 2007.
  • 10. Chung, S., et al. Rapid fabrication of aluminum shoe mold using vacuum sealed casting process. Journal of materials processing technology, Vol .142, Issue 2, Pages 326-333, 2003.
  • 11. Çalışkan, Ö. Umut, ve Durgun, İ. "Silikon kalıplama üretim teknolojisinin otomotiv ürün geliştirme sürecindeki uygulamaları. 12. Otomotiv ve Üretim Teknolojileri Sempozyumu, 13-14 Mayıs 2011, Bursa.
  • 12. Zmarzły, Paweł, Damian Gogolewski, and Tomasz Kozior. "Design guidelines for plastic casting using 3D printing." Journal of Engineered Fibers and Fabrics. Vol. 15, 2020.
  • 13. Chen, Dongzhi, et al. "Synthesis and characterization of novel room temperature vulcanized (RTV) silicone rubbers using Vinyl-POSS derivatives as cross linking agents." Polymer. Vol. 51, Issue 17, Pages 3867-3878, 2010.
  • 14. Christoforo, André Luis, et al. "Numerical Study of Finite Fracture Growth in an Epoxy Resin." International Journal of Materials Engineering. Vol. 6, Pages 15-21, 2016.
  • 15. İnternet: Dolidworks resmi web sitesi, Deneme sürümü, https://my.solidworks.com/trysolidworks?&lang=tr&utm_medium=cpc&utm_source=google&utm_campaign=202001_glo_ps_sea_tr_XOP6889_labl_swopt_eme_tr&mktid=10381&gclid=Cj0KCQiAyoeCBhCTARIsAOfpKxh_vWf7jl3RU6GeHhJxmeI_R1h_SwSjOpffRnsmt7kbzxqOv14OwsQaAjd0EALw_wcB, Ocak 21, 2021.
  • 16. Bruckner, Tim, Zach Oat, and Ruben Procopio. Pop Sculpture: How to Create Action Figures & Collectible Statues. Watson-Guptill Publications, 2010.
There are 16 citations in total.

Details

Primary Language Turkish
Subjects Mechanical Engineering
Journal Section Research Article
Authors

Fuat Kartal 0000-0002-2567-9705

Celal Nazlı 0000-0002-2574-1898

Zekeriya Yerlikaya 0000-0003-3659-2100

Arslan Kaptan 0000-0002-2431-9329

Project Number KÜ-BAP01/2019-31
Publication Date April 30, 2021
Submission Date October 13, 2020
Published in Issue Year 2021

Cite

APA Kartal, F., Nazlı, C., Yerlikaya, Z., Kaptan, A. (2021). 3B YAZICIDA ÜRETİLEN DÜZ DİŞLİ ÇARKLARIN RTV2 SİLİKONU KULLANILARAK ÇOĞALTILMASI. International Journal of 3D Printing Technologies and Digital Industry, 5(1), 34-42. https://doi.org/10.46519/ij3dptdi.810269
AMA Kartal F, Nazlı C, Yerlikaya Z, Kaptan A. 3B YAZICIDA ÜRETİLEN DÜZ DİŞLİ ÇARKLARIN RTV2 SİLİKONU KULLANILARAK ÇOĞALTILMASI. IJ3DPTDI. April 2021;5(1):34-42. doi:10.46519/ij3dptdi.810269
Chicago Kartal, Fuat, Celal Nazlı, Zekeriya Yerlikaya, and Arslan Kaptan. “3B YAZICIDA ÜRETİLEN DÜZ DİŞLİ ÇARKLARIN RTV2 SİLİKONU KULLANILARAK ÇOĞALTILMASI”. International Journal of 3D Printing Technologies and Digital Industry 5, no. 1 (April 2021): 34-42. https://doi.org/10.46519/ij3dptdi.810269.
EndNote Kartal F, Nazlı C, Yerlikaya Z, Kaptan A (April 1, 2021) 3B YAZICIDA ÜRETİLEN DÜZ DİŞLİ ÇARKLARIN RTV2 SİLİKONU KULLANILARAK ÇOĞALTILMASI. International Journal of 3D Printing Technologies and Digital Industry 5 1 34–42.
IEEE F. Kartal, C. Nazlı, Z. Yerlikaya, and A. Kaptan, “3B YAZICIDA ÜRETİLEN DÜZ DİŞLİ ÇARKLARIN RTV2 SİLİKONU KULLANILARAK ÇOĞALTILMASI”, IJ3DPTDI, vol. 5, no. 1, pp. 34–42, 2021, doi: 10.46519/ij3dptdi.810269.
ISNAD Kartal, Fuat et al. “3B YAZICIDA ÜRETİLEN DÜZ DİŞLİ ÇARKLARIN RTV2 SİLİKONU KULLANILARAK ÇOĞALTILMASI”. International Journal of 3D Printing Technologies and Digital Industry 5/1 (April 2021), 34-42. https://doi.org/10.46519/ij3dptdi.810269.
JAMA Kartal F, Nazlı C, Yerlikaya Z, Kaptan A. 3B YAZICIDA ÜRETİLEN DÜZ DİŞLİ ÇARKLARIN RTV2 SİLİKONU KULLANILARAK ÇOĞALTILMASI. IJ3DPTDI. 2021;5:34–42.
MLA Kartal, Fuat et al. “3B YAZICIDA ÜRETİLEN DÜZ DİŞLİ ÇARKLARIN RTV2 SİLİKONU KULLANILARAK ÇOĞALTILMASI”. International Journal of 3D Printing Technologies and Digital Industry, vol. 5, no. 1, 2021, pp. 34-42, doi:10.46519/ij3dptdi.810269.
Vancouver Kartal F, Nazlı C, Yerlikaya Z, Kaptan A. 3B YAZICIDA ÜRETİLEN DÜZ DİŞLİ ÇARKLARIN RTV2 SİLİKONU KULLANILARAK ÇOĞALTILMASI. IJ3DPTDI. 2021;5(1):34-42.

 download

Uluslararası 3B Yazıcı Teknolojileri ve Dijital Endüstri Dergisi Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.