Review
BibTex RIS Cite

ENDÜSTRİ 4.0 ÇERÇEVESİNDE KATMANLI İMALATTA SENSÖR UYGULAMALARI

Year 2021, , 85 - 97, 30.04.2021
https://doi.org/10.46519/ij3dptdi.837635

Abstract

Bu derleme makalesi, katmanlı imalatta (Kİ) sensör entegrasyonuna odaklanmıştır. Devrim yaratma potansiyeline sahip katmanlı imalat, ürün tasarımı ve malzemelerinde benzeri görülmemiş bir esneklik sunar. Ayrıca Kİ, montajı yalnızca tek bir bileşenle mümkün kılarak diğer üretim yöntemlerinden ayrılmaktadır. Bu özellik, sensörü üretim sürecinde doğrudan entegre etmeyi mümkün kılmaktadır. Sensör entegrasyonu geleneksel üretim yöntemleriyle istenen mükemmellikte yapılamamaktadır. Katmanlı imalatla üretilen sensör entegreli parçalar geniş bir uygulama alanına sahiptir. Özellikle Kİ uygulamaları ile endüstri 4 çerçevesinde biyomedikal, otomotiv ve havacılık endüstrilerinde uygulanabilmesi ile kilit unsurların olabileceği yenilikçi bir çok alanda kullanım alanı oluşturabilecektir.

References

  • 1. Çetinkaya, K., “Masaüstü üç boyutlu yazıcı”, International Journal of 3D Printing Technologies and Digital Industry, Cilt 1, Sayı 1, Sayfa 90-91, 2015.
  • 2. Gibson, I., Rosen, D. W., and Stucker, B., “Additive manufacturing technologies: 3D rapid prototyping to direct digital manufacturing”, Springer, New York, 2010.
  • 3. Qin, Y., Qi, Q., Scott, PJ., Jiang, X., “Status, comparison, and future of the representations of additive manufacturing data. CAD Computer Aided Design”, Cilt 111, Sayfa 44–64, 2019.
  • 4. ISO/ASTM. INTERNATIONAL STANDARD ISO / ASTM 52900, “Additive manufacturing — General principles — Terminology”, International Organization for Standardization, 2015.
  • 5. Liu, C., Le Roux, L., Körner, C., Tabaste, O., Lacan, F., Bigot, S., “Digital twin-enabled collaborative data management for metal additive manufacturing systems”, Journal of Manufacturing Systems, 2020.
  • 6. Lehmhus, D., Aumund-Kopp, C., Petzoldt, F., Godlinski, D., Haberkorn, A., Zöllmer., V., Busse, M., “Customized smartness: a survey on links between additive manufacturing and sensor integration”, Procedia Technology, Cilt 26, Sayfa 284-301, 2016.
  • 7. "ASTM 52900-15 Standard Terminology for Additive Manufacturing", ASTM International, 2015.
  • 8. Montazeri, M., “Smart additive manufacturing: in-process sensing and data analytics for online defect detection in metal additive manufacturing processes”, Doktora tezi, Nebraska Üniversitesi, Lincoln, 2019.
  • 9. Binder, M., Anstaett, C., Reisch, R., Schlick, G., Seidel, C., Reinhart, G., “Automated manufacturing of mechatronic parts by laser-based powder bed fusion”, Procedia Manufacturing, Cilt 18, Sayfa 12-19, 2018.
  • 10. Hossain, M.S., Gonzalez, J.A., Hernandez, R.M., Morton, P., Mireles, J., Choudhuri, A., Lin, Y., Wicker, R.B., “Smart parts fabrication using powder bed fusion additive manufacturing Technologies”, Additive Manufacturing, Cilt 10, Sayfa 58-66, 2016.
  • 11. Sehrt, J.T., Witt, G., “Part management by direct integration of RFID tags into beam melted parts”, RAPID 2011 Conference & Exposition, 2011.
  • 12. Sehrt, J.T., Witt, G., “Additive Manufacturing of smart parts and medical instruments, Proceedings of AEPR’12, 17th European Forum on Rapid Prototyping and Manufacturing”, 2012.
  • 13. Lachmayer, R., “Additive Manufacturing Quantifiziert: Visionäre Anwendungen und Stand der Technik”, Springer Berlin Heidelberg, Berlin, Heidelberg, 2017.
  • 14. MacDonald, E., Wicker, R., “Multiprocess 3D printing for increasing component functionality”, Science New York, New York, Cilt 353, 2016.
  • 15. Gebauer, M., “High performance tooling for sheet metal forming by Laser Beam Melting”, Rapid.Tech – International Trade Show & Conference for Additive Manufacturing, Sayfa 140–150, 2017.
  • 16. Mathew, J., Hauser, ve ark, “Integrating Fiber Fabry-Perot Cavity Sensor Into 3-D Printed Metal Components for Extreme High- Temperature Monitoring Applications”, IEEE Sensors Journal, Cilt 17, Sayfa 4107–4114, 2017.
  • 17. Stoffregen, H.A., “Strukturintegration piezoelektrischer Vielschichtaktoren mittels selektiven Laserschmelzens”, Dissertation, 2015.
  • 18. Binder, M., Illgner, M., Anstaett, C., Kindermann, P., Kirchbichler, L., Seidel, C., “Automated manufacturing of sensor-monitored parts”, Laser Technik Journal, Cilt 15, Sayı 3, Sayfa 36-39, 2018.
  • 19. Töppel, T., Lausch, H., Brand, M., Hensel, E., “Structural Integration of Sensors/Actuators by Laser Beam Melting for Tailored Smart Components”, JOM, Sayfa 321-327, 2018.
  • 20. Ehrenberg-Silies, S., Kind, S., Jetzke, T., Bovenschulte, M., “3D-Druck: Anwendungen und Potenziale”, https://vdivde-it.de/sites/default/files/document/additive-fertigungsverfahren-3d-druck-2017.pdf, Kasım 20, 2018.
  • 21. Binder, M., Kirchbichler, L., Seidel, C., Anstaett, C., Schlick, G., Reinhart, G., “Desing concepts fort he integration of electronic components into metal laser-based powder bed fusion parts”, Procedia CIRP, Cilt 81, Sayfa 992-997, 2019.
  • 22. Li, X., “Embedded sensors in layered manufacturing”, Dissertation, 2001.
  • 23. Mathew, J., Schneller, O., Polyzos, D., Havermann, D., Carter, R.M., MacPherson, W.N., Hand, D.P., Maier, R.R.J., “In-Fiber Fabry–Perot Cavity Sensor for High-Temperature Applications”, J. Lightwave Technol, Sayfa 2419–2425, 2015.
  • 24. Hehr, A., Norfolk, M., Wenning, J., Sheridan, J., Leser, P., Leser, P., Newman, J.A., “Integrating Fiber Optic Strain Sensors into Metal Using Ultrasonic Additive Manufacturing”, JOM, Cilt 70, Sayı 3, Sayfa 315–320, 2018.
  • 25. Norfolk, M., Wenning, J., Hehr, A., Johnson, H., “3D Printing Embedded Sensors Using Solid State Welding”, Berlin, 2016.
  • 26. Stoll, P., Mathew, J., Spierings, A., Bauer, T., Maier, R., “Embedding fibre optical sensors into SLM parts”, Solid Freeform Fabrication, 2016.
  • 27. Sehrt, J.T., “Möglichkeiten und Grenzen bei der generativen Herstellung metallischer Bauteile durch das trahlschmelzverfahren”, Zugl.: Duisburg-Essen, Univ., Diss., Shaker, Aachen, 2010.
  • 28. Pille, C., “In-Process Embedding of Piezo Sensors and RFID Transponders into Cast Parts for Autonomous Manufacturing Logistics”, 4th European Conference & Ehibition on Integration Issues of Miniaturized Systems in Como Conference, 2010. 29. Binder, M., Anstaett, C., Horn, M., Herzer, F., Schlick, G., Seidel, C., Schilp, J., Reinhart, G., “Potentials and challenges of multi-material processing by laser-based powder bed fusion”, Texas, 2018.
  • 30. Stoll, P., Leutenecker, B., Spiering, A., Klahn, C., Wegener, K., “Temperature Monitoring of a SLM Part with Embedded Sensor”, Industrializing Additive Manufacturing – AMPA, 2017.
  • 31. Arnau, A., “Piezoelectric Transducers and Applications”, 2004.
  • 32. Sirohi, J., Chopra, I., "Fundamental understanding of piezoelectric strain sensors," J Intell Mater Syst Struct, Cilt 11, Sayı 4, Sayfa 246-257, 2000.
  • 33. Webster, J. G., Eren, H., “Measurement, Instrumentation, and Sensors Handbook Spatial, Mechanical, Thermal, and Radiation Measurement”, 2014.
  • 34. Li, X. C., Golnas A., Prinz, F. B., "Shape deposition manufacturing of smart metallic structures with embedded sensors", in proceedings-spie the international society for optical engineering, 2000.
  • 35. Aguilera, E., Ramos, J., Espalin, D., Cedillos, F., Muse, D., Wicker, R., Macdonald, E., "3D printing of electro mechanical systems," in Proceedings of the Solid Freeform Fabrication Symposium, 2013.
  • 36. Pille, C., "In-process-embedding of piezo sensors and RFID transponders into cast parts for autonomous manufacturing logistics", Smart Systems Integration, Sayfa 1-10, 2010.
  • 37. Rai, R., Campbell M., Wood, K., "Extracting product performance by embedding sensors in SFF prototypes," in Proceedings of International Solid Freeform Fabrication Symposium, Austin, 2004.
  • 38. Wuest, T., Hribernik, K., Thoben, K-D., “Accessing servitisation potential of PLM data by applying the product avatar concept”, Production Planning & Control, Cilt 26, Sayfa 1198-1218, 2015.
  • 39. Bosse, S., Lechleiter, A., “A hybrid approach for Structural Monitoring with self-organizing multi-agent systems and inverse numerical methods in material-embedded sensor networks”, Mechatronics, 2015.
  • 40. Boll, D., Schubert, K., Brauner, C., Lang, W., “Miniaturized Flexible Interdigital Sensor for In Situ Dielectric Cure Monitoring of Composite Materials”, IEEE Sensors Journal, Cilt 14, Sayfa 2193-2197, 2014
  • 41. Lehmhus, D., Wuest, T., Wellsandt, S., Bosse, S., Kaihara, T., Thoben, K-D., Busse, M., “Cloud-based Automated Design and Additive Manufacturing: A Usage Data-Enabled Paradigm Shift”, Sensors, Cilt 15, Sayfa 32079-32122, 2015.
  • 42. Denkena, B., Mörke ve ark., “Development and First Applications of Gentelligent Components Over Their Lifecycle”, CIRP Journal of Manufacturing Science and Technology, Cilt 7, Sayfa 139-150, 2014.
  • 43. Lachmayer, R., Mozgova, I., Reimche, W., Colditz, F., Mroz, G., Gottwald, P., “Technical inheritance”, A Concept to Adapt the Evolution of Nature to Product Engineering, Procedia Technology, Cilt 15, Sayfa 178-187, 2014.
  • 44. Espalin, D., Muse, DW., MacDonald, E., Wicker, RB., “3D Printing multifunctionality: structures with electronics”, Internatiol Journal of Advanced Manufacturing Technology, Cilt 72, Sayfa 963-978, 2014.
  • 45. http://www.stratasys.com/3d-printers/technologies/polyjet-technology, 29 Şubat, 2016.
  • 46. Lu, Y., Vatani, M., Kim, H-C., Lee, R-C., Choi, J-W., “Development of direct printing/curing process for 3D structural electronics”, Proceedings of the ASME 2013 International Mechanical Engineering Congress & Exposition, San Diego, 13-21 Kasım, 2013.
  • 47. http://www.stratasys.com/materials/polyjet/digital-materials, 29 Şubat, 2016.
  • 48. Maiwald, M., Werner, C., Zoellmer, V., Busse, M., “INKtelligent printing® for sensorial applications”, Sensor Review, Cilt 30, Sayı 1, Sayfa 19-23, 2010.
  • 49. Maiwald, M., Werner, C., Zoellmer, V., Busse, M., “INKtelligent printed strain gauges”, Sensors and Actuators A, Physical, Cilt 162, Sayfa 198-201, 2010.
  • 50. Pal, E., Zöllmer ve ark, “Synthesis of Cu0.55Ni0.44Mn0.01 alloy nanoparticles by solution combustion method and their application in aerosol printing”, Colloids and Surfaces A, Physicochemical and Engineering Aspects, Cilt 384, Sayfa 661-667, 2011.
  • 51. Pal, E., Kun, ve ark, “Composition-dependent sintering behaviour of chemically synthesised CuNi nanoparticles and their application in aerosol printing for preparation of conductive microstructures”, Colloid and Polymer Science, Cilt 290, 2012.
  • 52. Wicker, RB., Medina, F., MacDonald, E., Muse, DW., Espalin, D., “Methods and systems for embedding filaments in 3D structures, structural components, and structural electronic, electromagnetic and electromechanical components/devices”, 2013.
  • 53. Bosse, S., Lehmhus, D., Lang, W., Busse (Eds.), M., “Material-integrated intelligent systems: Technology and applications”, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2018.
  • 54. Hoerber, J., Glasschroeder, J., Pfeffer, M., Schilp, J., Zaeh, M., Franke, J., “Approaches for Additive Manufacturing of 3D Electronic Applications”, Procedia CIRP 17, Sayfa 806–811, 2014.
  • 55. Montazeri, M., Yavari, R., Rao, P., and Boulware, P., "In-Process Monitoring of Material Cross-Contamination Defects in Laser Powder Bed Fusion," Journal of Manufacturing Science and Engineering, Cilt 140, Sayı 11, Sayfa 111001-111001-111019, 2018.
  • 56. Grasso, M., Colosimo, B. M., "Process defects and in situ monitoring methods in metal powder bed fusion: a review", Measurement Science and Technology, Cilt 28, Sayı 4, 2017.
  • 57. Zarreh, A., Saygin, C., Wan, H., Lee, Y., and Bracho, A., "Cybersecurity Analysis of Smart Manufacturing System Using Game Theory Approach and Quantal Response Equilibrium", Procedia Manufacturing, Cilt 17, Sayfa 1001-1008, 2018.
  • 58. Malekipour, E. ve ark, "Common defects and contributing parameters in powder bed fusion AM process and their classification for online monitoring and control: a review," The International Journal of AM Technology, Cilt 95, Sayı 1, 2018.
  • 59. Malekipour, E., Tovar, A., El-Mounayri, H., "Heat Conduction and Geometry Topology Optimization of Support Structure in Laser-Based Additive Manufacturing," Springer International Publishing, Sayfa 17-27, 2018.
  • 60. Seifi, M., Gorelik, M., Waller, J., Hrabe, N., Shamsaei, N., Daniewicz, S., Lewandowski, J. J., "Progress Towards Metal Additive Manufacturing Standardization to Support Qualification and Certification," JOM, Cilt 69, Sayı 3, Sayfa 439-455, 2017.
  • 61. Mazumder, J., "Design for metallic additive manufacturing machine with capability for “Certify as You Build”," Procedia CIRP, Cilt 36, Sayfa 187-192, 2015.
  • 62. Olakanmi, E. O., Cochrane, R., Dalgarno, K., "A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: Processing, microstructure, and properties", Progress in Materials Science, Cilt 74, Sayfa 401-477, 2015.
  • 63. 64. Norfolk, M., “Fabrisonic-building fiber optic strain sensors into metal components”, https://additivemanufacturing.com/2018/02/26/fabrisonic-building-fiber-optic-strain-sensors-into-metal-components/, Şubat 26, 2018.
  • 65. White, D., “Ultrasonic consolidation of aluminum tooling”, Advanced Materials Processes, Cilt 161, Sayfa 64–65, 2003.
  • 66. Hehr, A., Norfolk, M., Kominsky, D., Boulanger, A., Davis, M., Boulware, P., “Smart build-plate for metal additive manufacturing processes”, Sensors, Cilt 2, Sayı 2, Sayfa 360, 2020.
  • 67. Mukherjee, T., DebRoy, T., “A digital twin for rapid qualification of 3D printed metallic components”, Applied Materials Today, Cilt 14, Sayfa 59–65, 2019.
  • 68. Knapp, GL., Mukherjee, T., Zuback, JS., Wei, HL., Palmer, TA., De, A., DebRoy, T., “Building blocks for a digital twin of additive manufacturing”, Acta Materialia, Cilt 135, Sayfa 9–390, 2017.
  • 69. MacDonald, E., Salas, R., Espalin, D., Perez, M., Aguilera, E., Muse, D., Wicker, RB., “3D Printing for the Rapid Prototyping of Structural Electronics”, IEEE Access, Cilt 2, Sayfa 234-242, 2014.
Year 2021, , 85 - 97, 30.04.2021
https://doi.org/10.46519/ij3dptdi.837635

Abstract

References

  • 1. Çetinkaya, K., “Masaüstü üç boyutlu yazıcı”, International Journal of 3D Printing Technologies and Digital Industry, Cilt 1, Sayı 1, Sayfa 90-91, 2015.
  • 2. Gibson, I., Rosen, D. W., and Stucker, B., “Additive manufacturing technologies: 3D rapid prototyping to direct digital manufacturing”, Springer, New York, 2010.
  • 3. Qin, Y., Qi, Q., Scott, PJ., Jiang, X., “Status, comparison, and future of the representations of additive manufacturing data. CAD Computer Aided Design”, Cilt 111, Sayfa 44–64, 2019.
  • 4. ISO/ASTM. INTERNATIONAL STANDARD ISO / ASTM 52900, “Additive manufacturing — General principles — Terminology”, International Organization for Standardization, 2015.
  • 5. Liu, C., Le Roux, L., Körner, C., Tabaste, O., Lacan, F., Bigot, S., “Digital twin-enabled collaborative data management for metal additive manufacturing systems”, Journal of Manufacturing Systems, 2020.
  • 6. Lehmhus, D., Aumund-Kopp, C., Petzoldt, F., Godlinski, D., Haberkorn, A., Zöllmer., V., Busse, M., “Customized smartness: a survey on links between additive manufacturing and sensor integration”, Procedia Technology, Cilt 26, Sayfa 284-301, 2016.
  • 7. "ASTM 52900-15 Standard Terminology for Additive Manufacturing", ASTM International, 2015.
  • 8. Montazeri, M., “Smart additive manufacturing: in-process sensing and data analytics for online defect detection in metal additive manufacturing processes”, Doktora tezi, Nebraska Üniversitesi, Lincoln, 2019.
  • 9. Binder, M., Anstaett, C., Reisch, R., Schlick, G., Seidel, C., Reinhart, G., “Automated manufacturing of mechatronic parts by laser-based powder bed fusion”, Procedia Manufacturing, Cilt 18, Sayfa 12-19, 2018.
  • 10. Hossain, M.S., Gonzalez, J.A., Hernandez, R.M., Morton, P., Mireles, J., Choudhuri, A., Lin, Y., Wicker, R.B., “Smart parts fabrication using powder bed fusion additive manufacturing Technologies”, Additive Manufacturing, Cilt 10, Sayfa 58-66, 2016.
  • 11. Sehrt, J.T., Witt, G., “Part management by direct integration of RFID tags into beam melted parts”, RAPID 2011 Conference & Exposition, 2011.
  • 12. Sehrt, J.T., Witt, G., “Additive Manufacturing of smart parts and medical instruments, Proceedings of AEPR’12, 17th European Forum on Rapid Prototyping and Manufacturing”, 2012.
  • 13. Lachmayer, R., “Additive Manufacturing Quantifiziert: Visionäre Anwendungen und Stand der Technik”, Springer Berlin Heidelberg, Berlin, Heidelberg, 2017.
  • 14. MacDonald, E., Wicker, R., “Multiprocess 3D printing for increasing component functionality”, Science New York, New York, Cilt 353, 2016.
  • 15. Gebauer, M., “High performance tooling for sheet metal forming by Laser Beam Melting”, Rapid.Tech – International Trade Show & Conference for Additive Manufacturing, Sayfa 140–150, 2017.
  • 16. Mathew, J., Hauser, ve ark, “Integrating Fiber Fabry-Perot Cavity Sensor Into 3-D Printed Metal Components for Extreme High- Temperature Monitoring Applications”, IEEE Sensors Journal, Cilt 17, Sayfa 4107–4114, 2017.
  • 17. Stoffregen, H.A., “Strukturintegration piezoelektrischer Vielschichtaktoren mittels selektiven Laserschmelzens”, Dissertation, 2015.
  • 18. Binder, M., Illgner, M., Anstaett, C., Kindermann, P., Kirchbichler, L., Seidel, C., “Automated manufacturing of sensor-monitored parts”, Laser Technik Journal, Cilt 15, Sayı 3, Sayfa 36-39, 2018.
  • 19. Töppel, T., Lausch, H., Brand, M., Hensel, E., “Structural Integration of Sensors/Actuators by Laser Beam Melting for Tailored Smart Components”, JOM, Sayfa 321-327, 2018.
  • 20. Ehrenberg-Silies, S., Kind, S., Jetzke, T., Bovenschulte, M., “3D-Druck: Anwendungen und Potenziale”, https://vdivde-it.de/sites/default/files/document/additive-fertigungsverfahren-3d-druck-2017.pdf, Kasım 20, 2018.
  • 21. Binder, M., Kirchbichler, L., Seidel, C., Anstaett, C., Schlick, G., Reinhart, G., “Desing concepts fort he integration of electronic components into metal laser-based powder bed fusion parts”, Procedia CIRP, Cilt 81, Sayfa 992-997, 2019.
  • 22. Li, X., “Embedded sensors in layered manufacturing”, Dissertation, 2001.
  • 23. Mathew, J., Schneller, O., Polyzos, D., Havermann, D., Carter, R.M., MacPherson, W.N., Hand, D.P., Maier, R.R.J., “In-Fiber Fabry–Perot Cavity Sensor for High-Temperature Applications”, J. Lightwave Technol, Sayfa 2419–2425, 2015.
  • 24. Hehr, A., Norfolk, M., Wenning, J., Sheridan, J., Leser, P., Leser, P., Newman, J.A., “Integrating Fiber Optic Strain Sensors into Metal Using Ultrasonic Additive Manufacturing”, JOM, Cilt 70, Sayı 3, Sayfa 315–320, 2018.
  • 25. Norfolk, M., Wenning, J., Hehr, A., Johnson, H., “3D Printing Embedded Sensors Using Solid State Welding”, Berlin, 2016.
  • 26. Stoll, P., Mathew, J., Spierings, A., Bauer, T., Maier, R., “Embedding fibre optical sensors into SLM parts”, Solid Freeform Fabrication, 2016.
  • 27. Sehrt, J.T., “Möglichkeiten und Grenzen bei der generativen Herstellung metallischer Bauteile durch das trahlschmelzverfahren”, Zugl.: Duisburg-Essen, Univ., Diss., Shaker, Aachen, 2010.
  • 28. Pille, C., “In-Process Embedding of Piezo Sensors and RFID Transponders into Cast Parts for Autonomous Manufacturing Logistics”, 4th European Conference & Ehibition on Integration Issues of Miniaturized Systems in Como Conference, 2010. 29. Binder, M., Anstaett, C., Horn, M., Herzer, F., Schlick, G., Seidel, C., Schilp, J., Reinhart, G., “Potentials and challenges of multi-material processing by laser-based powder bed fusion”, Texas, 2018.
  • 30. Stoll, P., Leutenecker, B., Spiering, A., Klahn, C., Wegener, K., “Temperature Monitoring of a SLM Part with Embedded Sensor”, Industrializing Additive Manufacturing – AMPA, 2017.
  • 31. Arnau, A., “Piezoelectric Transducers and Applications”, 2004.
  • 32. Sirohi, J., Chopra, I., "Fundamental understanding of piezoelectric strain sensors," J Intell Mater Syst Struct, Cilt 11, Sayı 4, Sayfa 246-257, 2000.
  • 33. Webster, J. G., Eren, H., “Measurement, Instrumentation, and Sensors Handbook Spatial, Mechanical, Thermal, and Radiation Measurement”, 2014.
  • 34. Li, X. C., Golnas A., Prinz, F. B., "Shape deposition manufacturing of smart metallic structures with embedded sensors", in proceedings-spie the international society for optical engineering, 2000.
  • 35. Aguilera, E., Ramos, J., Espalin, D., Cedillos, F., Muse, D., Wicker, R., Macdonald, E., "3D printing of electro mechanical systems," in Proceedings of the Solid Freeform Fabrication Symposium, 2013.
  • 36. Pille, C., "In-process-embedding of piezo sensors and RFID transponders into cast parts for autonomous manufacturing logistics", Smart Systems Integration, Sayfa 1-10, 2010.
  • 37. Rai, R., Campbell M., Wood, K., "Extracting product performance by embedding sensors in SFF prototypes," in Proceedings of International Solid Freeform Fabrication Symposium, Austin, 2004.
  • 38. Wuest, T., Hribernik, K., Thoben, K-D., “Accessing servitisation potential of PLM data by applying the product avatar concept”, Production Planning & Control, Cilt 26, Sayfa 1198-1218, 2015.
  • 39. Bosse, S., Lechleiter, A., “A hybrid approach for Structural Monitoring with self-organizing multi-agent systems and inverse numerical methods in material-embedded sensor networks”, Mechatronics, 2015.
  • 40. Boll, D., Schubert, K., Brauner, C., Lang, W., “Miniaturized Flexible Interdigital Sensor for In Situ Dielectric Cure Monitoring of Composite Materials”, IEEE Sensors Journal, Cilt 14, Sayfa 2193-2197, 2014
  • 41. Lehmhus, D., Wuest, T., Wellsandt, S., Bosse, S., Kaihara, T., Thoben, K-D., Busse, M., “Cloud-based Automated Design and Additive Manufacturing: A Usage Data-Enabled Paradigm Shift”, Sensors, Cilt 15, Sayfa 32079-32122, 2015.
  • 42. Denkena, B., Mörke ve ark., “Development and First Applications of Gentelligent Components Over Their Lifecycle”, CIRP Journal of Manufacturing Science and Technology, Cilt 7, Sayfa 139-150, 2014.
  • 43. Lachmayer, R., Mozgova, I., Reimche, W., Colditz, F., Mroz, G., Gottwald, P., “Technical inheritance”, A Concept to Adapt the Evolution of Nature to Product Engineering, Procedia Technology, Cilt 15, Sayfa 178-187, 2014.
  • 44. Espalin, D., Muse, DW., MacDonald, E., Wicker, RB., “3D Printing multifunctionality: structures with electronics”, Internatiol Journal of Advanced Manufacturing Technology, Cilt 72, Sayfa 963-978, 2014.
  • 45. http://www.stratasys.com/3d-printers/technologies/polyjet-technology, 29 Şubat, 2016.
  • 46. Lu, Y., Vatani, M., Kim, H-C., Lee, R-C., Choi, J-W., “Development of direct printing/curing process for 3D structural electronics”, Proceedings of the ASME 2013 International Mechanical Engineering Congress & Exposition, San Diego, 13-21 Kasım, 2013.
  • 47. http://www.stratasys.com/materials/polyjet/digital-materials, 29 Şubat, 2016.
  • 48. Maiwald, M., Werner, C., Zoellmer, V., Busse, M., “INKtelligent printing® for sensorial applications”, Sensor Review, Cilt 30, Sayı 1, Sayfa 19-23, 2010.
  • 49. Maiwald, M., Werner, C., Zoellmer, V., Busse, M., “INKtelligent printed strain gauges”, Sensors and Actuators A, Physical, Cilt 162, Sayfa 198-201, 2010.
  • 50. Pal, E., Zöllmer ve ark, “Synthesis of Cu0.55Ni0.44Mn0.01 alloy nanoparticles by solution combustion method and their application in aerosol printing”, Colloids and Surfaces A, Physicochemical and Engineering Aspects, Cilt 384, Sayfa 661-667, 2011.
  • 51. Pal, E., Kun, ve ark, “Composition-dependent sintering behaviour of chemically synthesised CuNi nanoparticles and their application in aerosol printing for preparation of conductive microstructures”, Colloid and Polymer Science, Cilt 290, 2012.
  • 52. Wicker, RB., Medina, F., MacDonald, E., Muse, DW., Espalin, D., “Methods and systems for embedding filaments in 3D structures, structural components, and structural electronic, electromagnetic and electromechanical components/devices”, 2013.
  • 53. Bosse, S., Lehmhus, D., Lang, W., Busse (Eds.), M., “Material-integrated intelligent systems: Technology and applications”, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2018.
  • 54. Hoerber, J., Glasschroeder, J., Pfeffer, M., Schilp, J., Zaeh, M., Franke, J., “Approaches for Additive Manufacturing of 3D Electronic Applications”, Procedia CIRP 17, Sayfa 806–811, 2014.
  • 55. Montazeri, M., Yavari, R., Rao, P., and Boulware, P., "In-Process Monitoring of Material Cross-Contamination Defects in Laser Powder Bed Fusion," Journal of Manufacturing Science and Engineering, Cilt 140, Sayı 11, Sayfa 111001-111001-111019, 2018.
  • 56. Grasso, M., Colosimo, B. M., "Process defects and in situ monitoring methods in metal powder bed fusion: a review", Measurement Science and Technology, Cilt 28, Sayı 4, 2017.
  • 57. Zarreh, A., Saygin, C., Wan, H., Lee, Y., and Bracho, A., "Cybersecurity Analysis of Smart Manufacturing System Using Game Theory Approach and Quantal Response Equilibrium", Procedia Manufacturing, Cilt 17, Sayfa 1001-1008, 2018.
  • 58. Malekipour, E. ve ark, "Common defects and contributing parameters in powder bed fusion AM process and their classification for online monitoring and control: a review," The International Journal of AM Technology, Cilt 95, Sayı 1, 2018.
  • 59. Malekipour, E., Tovar, A., El-Mounayri, H., "Heat Conduction and Geometry Topology Optimization of Support Structure in Laser-Based Additive Manufacturing," Springer International Publishing, Sayfa 17-27, 2018.
  • 60. Seifi, M., Gorelik, M., Waller, J., Hrabe, N., Shamsaei, N., Daniewicz, S., Lewandowski, J. J., "Progress Towards Metal Additive Manufacturing Standardization to Support Qualification and Certification," JOM, Cilt 69, Sayı 3, Sayfa 439-455, 2017.
  • 61. Mazumder, J., "Design for metallic additive manufacturing machine with capability for “Certify as You Build”," Procedia CIRP, Cilt 36, Sayfa 187-192, 2015.
  • 62. Olakanmi, E. O., Cochrane, R., Dalgarno, K., "A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: Processing, microstructure, and properties", Progress in Materials Science, Cilt 74, Sayfa 401-477, 2015.
  • 63. 64. Norfolk, M., “Fabrisonic-building fiber optic strain sensors into metal components”, https://additivemanufacturing.com/2018/02/26/fabrisonic-building-fiber-optic-strain-sensors-into-metal-components/, Şubat 26, 2018.
  • 65. White, D., “Ultrasonic consolidation of aluminum tooling”, Advanced Materials Processes, Cilt 161, Sayfa 64–65, 2003.
  • 66. Hehr, A., Norfolk, M., Kominsky, D., Boulanger, A., Davis, M., Boulware, P., “Smart build-plate for metal additive manufacturing processes”, Sensors, Cilt 2, Sayı 2, Sayfa 360, 2020.
  • 67. Mukherjee, T., DebRoy, T., “A digital twin for rapid qualification of 3D printed metallic components”, Applied Materials Today, Cilt 14, Sayfa 59–65, 2019.
  • 68. Knapp, GL., Mukherjee, T., Zuback, JS., Wei, HL., Palmer, TA., De, A., DebRoy, T., “Building blocks for a digital twin of additive manufacturing”, Acta Materialia, Cilt 135, Sayfa 9–390, 2017.
  • 69. MacDonald, E., Salas, R., Espalin, D., Perez, M., Aguilera, E., Muse, D., Wicker, RB., “3D Printing for the Rapid Prototyping of Structural Electronics”, IEEE Access, Cilt 2, Sayfa 234-242, 2014.
There are 67 citations in total.

Details

Primary Language Turkish
Subjects Biomaterial
Journal Section Review Articles
Authors

Ahu Çelebi 0000-0003-0401-5384

Yağmur Koda This is me 0000-0001-5277-0275

Publication Date April 30, 2021
Submission Date December 8, 2020
Published in Issue Year 2021

Cite

APA Çelebi, A., & Koda, Y. (2021). ENDÜSTRİ 4.0 ÇERÇEVESİNDE KATMANLI İMALATTA SENSÖR UYGULAMALARI. International Journal of 3D Printing Technologies and Digital Industry, 5(1), 85-97. https://doi.org/10.46519/ij3dptdi.837635
AMA Çelebi A, Koda Y. ENDÜSTRİ 4.0 ÇERÇEVESİNDE KATMANLI İMALATTA SENSÖR UYGULAMALARI. IJ3DPTDI. April 2021;5(1):85-97. doi:10.46519/ij3dptdi.837635
Chicago Çelebi, Ahu, and Yağmur Koda. “ENDÜSTRİ 4.0 ÇERÇEVESİNDE KATMANLI İMALATTA SENSÖR UYGULAMALARI”. International Journal of 3D Printing Technologies and Digital Industry 5, no. 1 (April 2021): 85-97. https://doi.org/10.46519/ij3dptdi.837635.
EndNote Çelebi A, Koda Y (April 1, 2021) ENDÜSTRİ 4.0 ÇERÇEVESİNDE KATMANLI İMALATTA SENSÖR UYGULAMALARI. International Journal of 3D Printing Technologies and Digital Industry 5 1 85–97.
IEEE A. Çelebi and Y. Koda, “ENDÜSTRİ 4.0 ÇERÇEVESİNDE KATMANLI İMALATTA SENSÖR UYGULAMALARI”, IJ3DPTDI, vol. 5, no. 1, pp. 85–97, 2021, doi: 10.46519/ij3dptdi.837635.
ISNAD Çelebi, Ahu - Koda, Yağmur. “ENDÜSTRİ 4.0 ÇERÇEVESİNDE KATMANLI İMALATTA SENSÖR UYGULAMALARI”. International Journal of 3D Printing Technologies and Digital Industry 5/1 (April 2021), 85-97. https://doi.org/10.46519/ij3dptdi.837635.
JAMA Çelebi A, Koda Y. ENDÜSTRİ 4.0 ÇERÇEVESİNDE KATMANLI İMALATTA SENSÖR UYGULAMALARI. IJ3DPTDI. 2021;5:85–97.
MLA Çelebi, Ahu and Yağmur Koda. “ENDÜSTRİ 4.0 ÇERÇEVESİNDE KATMANLI İMALATTA SENSÖR UYGULAMALARI”. International Journal of 3D Printing Technologies and Digital Industry, vol. 5, no. 1, 2021, pp. 85-97, doi:10.46519/ij3dptdi.837635.
Vancouver Çelebi A, Koda Y. ENDÜSTRİ 4.0 ÇERÇEVESİNDE KATMANLI İMALATTA SENSÖR UYGULAMALARI. IJ3DPTDI. 2021;5(1):85-97.

 download

Uluslararası 3B Yazıcı Teknolojileri ve Dijital Endüstri Dergisi Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.