Review
BibTex RIS Cite

3B KARBON ELEKTRONİK CİHAZ MÜHENDİSLİĞİ: DİJİTAL ENDÜSTRİDE RÖNESANS

Year 2019, Volume: 3 Issue: 1, 94 - 101, 30.04.2019

Abstract

Endüstri
4.0 kavramının imalata getirdiği yenileşme hareketi gibi, üç boyutlu karbon
elektronik cihaz mühendisliğide mühendislik bilimlerinde bir rönesans gibi
görülebilir.  Üç boyutlu baskı ilk
zamanlarda sadece imalat öncesi tasarıma yardımcı olarak prototip hazırlama
aşamasında kullanılmaktaydı. Günümüzde özellikleri geliştirilen üç boyutlu
baskı ile eklemeli imalat sistemleri sayesinde kavramsal dijital modeller kısa
sürelerde kullanıma hazır cihazlara dönüştürülebilmektedir. Halen net şekillere
yüksek tamlıkta ulaşmada iyileştirilmesi gereken yönleri olsada, düşük üretim
hacimleri için önemli bir imalat seçeneği olmuştur. Bu makalede mevcut
elektronik cihaz mühendisliğinde imalatın genel bir değerlendirmesi yapılmış
dijital çağda üç boyutlu baskı yönteminin geleceğin imalat sistemleri
içerisindeki konumu bildirilmiştir.

References

  • 1. Dornfeld D., Lee D.E., "Precision Manufacturing", Springer Verlag, 2008.
  • 2. De Volder M.F.L., Tawfick S.H., Baughman R.H., Hart A.J., "Carbon Nanotubes: Present and Future Commercial Applications", Science, 339 (6119), Pages 535-539, 2013. DOI: 10.1126/science.1222453
  • 3. Lopes A.J., MacDonald E., Wicker R.B., "Integrating stereolithography and direct print technologies for 3D structural electronics fabrication", Rapid Prototyping Journal, 18 (2), Pages 129-143, 2012.
  • 4. Çelen S., Dijital Endüstri Mimarisinin Siyah Tuğlaları: 3 Boyutlu Karbon Elektronik Cihazlar, 3rd International Congress on 3D Printing (Additive Manufacturing) Technologies and Digital Industry 2018, 19-21 April 2018, Antalya, Turkey, Sayfa 514-521, 2018.
  • 5. Baudish P., Mueller S., Personal Fabrication, Foundations and Trends in Human-Computer Interaction, 10 (3–4); Pages 165–293, 2016.
  • 6. Umetani N., Koyama Y., Schmidt R., Igarashi T., Pteromys: Interactive design and optimization of free-formed free-flight model airplanes. ACM Transaction on Graphics Article, 33,(4), 65, 2014.
  • 7. Shneiderman B., Direct manipulation: A step beyond programming languages, Computer, 16,(8), Pages 57–69, 1983.
  • 8. Willis K. D. D., Xu C., Wu J. K., Levin G., Gross M. D., Interactive fabrication: New interfaces for digital fabrication. In Proceedings of the Fifth International Conference on Tangible, Embedded, and Embodied Interaction (TEI ’11), Pages 69–72, 2011.
  • 9. Osborne 1, Portable Microcomputer, 1981. http://www.computinghistory.org.uk/det/504/osborne-1/
  • 10. Schael T., Workflow Management Systems for Process Organisations, Springer, 208, 2013.
  • 11. Weiser M.The computer for the 21st century. In Mobile Computing and Communications Review -Special issue dedicated to Mark Weiser (SIGMOBILE), 3, (3), Pages 3–11, 1999.
  • 12. Deek F.P., McHugh J. A. M., Open Source: Technology and Policy, Cambridge University Press, 2007.
  • 13. Snavely N., Seitz S. M., Szeliski R., Photo tourism: Exploring photo collections in 3D. ACM Transactions on Graphics, 25,(3), Pages 835–846, 2006.
  • 14. Lafreniere B., Grossman T., Anderson F., Matejka J., Kerrick H., Nagy D., Vasey L., Atherton E., Beirne N., Coelho M. H., Cote N., Li S., Nogueira A., Nguyen L., Schwinn T., Stoddart J., Thomasson D., Wang R., White T., Benjamin D., Conti M., Menges A., Fitzmaurice G., Crowdsourced fabrication, In Proceedings of the 29th Annual Symposium on User Interface Software and Technology (UIST ’16), Pages 15–28, 2016.
  • 15. SGL Group, https://www.sglgroup.com/cms/_common/downloads/innovation/future-carbon-technologies/CARBOPRINT_additiv_manufacturing_with_carbons_e.pdf, 2019.
  • 16. Leigh S.J., Bradley R.J., Purssell C.P., Billson D.R., Hutchins D.A., A Simple, Low-Cost Conductive Composite Material for 3D Printing of Electronic Sensors., PLoS ONE, 7,(11), e49365, 2012. doi:10.1371/journal.pone.0049365
  • 17. Sumita M., Sakata K., Asai S., Miyasaka K., Nakagawa H., Dispersion of fillers and the electrical conductivity of polymer blends filled with carbon black, Polym Bull, 25, Pages 265–271, 1991.
  • 18. Leigh S.J., Polymer Composites for 3D Printing of Functional Sensors and Transducers, IEEE, 2016.
  • 19. Klomp S., Printing Conductive and Non-Conductive Materials Simultaneously on Low-End 3D Printers, Master's dissertation, Universiteit Gent, 2015.
  • 20. Klomp S., Vandevelde C., Saldien J., Printing Conductive and Non-Conductive Material Simultaneously on Low-end 3D Printers, 2015.
  • 21. Molitch-Hou M., Voxel8: 1st Electronics 3D Printer - 3D Printing Industry, 2015. https://3dprintingindustry.com/news/voxel8-unleashes-electronics-3d-printer-ces-world-39060/
  • 22. Voxel8 Unveils New Electronics 3D Printer At 2015 CES-3DPrint.com, http://3dprint.com/35085/voxel8-electronics-3d-printer/.
  • 23. Castillo S., Muse D., Medina F., Macdonald E., Wicker R., Electronics Integration in Conformal Substrates Fabricated with Additive Layered Manufacturing, 730–737, 2009.
  • 24. Frauenfelder M., Make: Ultimate Guide to 3D Printing 2014, Make: Magazine, 2012.
  • 25. Kwok S.W., Goh K.H.H., Tan Z.D., Tan S.T.M., Tjiu W. W., Soh J.Y., Glenn Ng Z. J., Chan Y. Z., Hui H.K., Goh K.E.J., Electrically conductive filament for 3D-printed circuits and sensors, Applied Materials Today, 9, Pages 167–175, 2017.
  • 26. Erik's Bowden Extruder; http://reprap.org/wiki/Erik's_Bowden_Extruder, 2019.
  • 27. Esun, www.esunchina.net, 2019.
  • 28. Proto-Pasta, www.proto-pasta.com, 2019.
  • 29. Makergeeks, www.makergeeks.com, 2019.
  • 30. 3DXTech, www.3dxtech.com, 2019.
  • 31. Zen Toolworks, www.zencnc.com, 2019.
  • 32. Bare, https://www.bareconductive.com, 2019.
  • 33. Bronzefill, https://colorfabb.com/bronzefill, 2019.
  • 34. Ahn B.Y., Duoss E.B., Motala M.J., Guo X., Park S.-I., Xiong Y., Yoon J., Nuzzo R.G., Rogers J.A., Lewis J.A., Omni directional printing of flexible, stretchable,and spanning silver microelectrodes, Science, 323, Pages 1590–1593, 2009.
  • 35. Walker S.B., Lewis J.A., Reactive silver inks for patterning high-conductivity features at mild temperatures, J. Am. Chem. Soc., 134, (3), Pages 1419–1421, 2012.
  • 36. Hohimer C.J., Petrossian G.,Ameli A., Mo C.,Pötschke P., Electrical conductivity and piezoresistive response of 3D printed thermoplastic polyurethane/multiwalled carbon nanotube composites, Proceedings Volume 10596, Behavior and Mechanics of Multifunctional Materials and Composites XII; 105960J), 2018 https://doi.org/10.1117/12.2296774
  • 37. Sugiyama K., Matsuzakia R.,Ueda M., Todoroki A., Hirano Y., 3D printing of composite sandwich structures using continuous carbon fiber and fiber tension, Composites Part A, 113, Pages 114–121, 2018.
  • 38. Willis K. D. D., Brockmeyer E., Hudson S. E., Poupyrev I., Printed optics: 3D printing of embedded optical elements for interactive devices, In Proceedings of the 25th Annual ACM Symposium on User Interface Software and Technology (UIST ’12), Pages 589–598, 2012.
  • 39. Wessely M., Tsandilas T., Mackay W. E., Stretchis: Fabricating highly stretchable user interfaces, In Proceedings of the 29th Annual Symposium on User Interface Software and Technology (UIST ’16), Pages 697–704, 2016.

3D CARBON ELECTRONIC DEVICE ENGINEERING:RENAISSANCE OF THE DIGITAL INDUSTRY

Year 2019, Volume: 3 Issue: 1, 94 - 101, 30.04.2019

Abstract

3D carbon electronic device engineering can be
considered as a Renaissance in Engineering Sciences similarly the regeneration
movement which was brought by Industry 4.0 concept to the manufacturing. In its
early times 3D manufacturing has been used only for the prototype preperation
stage to support product design. Today conceptual digital models can be turned
to ready-to-use devices in short times thanks to the additive manufacturing
systems with the improved properties of 3D print. 3D print is an important
manufacturing option, although it has some factors which need to be improved to
achieve higher accuracy of net shapes. In this manuscript, manufacturing of
current electronic device engineering was evaluated and the place of 3D print
in the future manufacturing methods was reported in this digital age. 

References

  • 1. Dornfeld D., Lee D.E., "Precision Manufacturing", Springer Verlag, 2008.
  • 2. De Volder M.F.L., Tawfick S.H., Baughman R.H., Hart A.J., "Carbon Nanotubes: Present and Future Commercial Applications", Science, 339 (6119), Pages 535-539, 2013. DOI: 10.1126/science.1222453
  • 3. Lopes A.J., MacDonald E., Wicker R.B., "Integrating stereolithography and direct print technologies for 3D structural electronics fabrication", Rapid Prototyping Journal, 18 (2), Pages 129-143, 2012.
  • 4. Çelen S., Dijital Endüstri Mimarisinin Siyah Tuğlaları: 3 Boyutlu Karbon Elektronik Cihazlar, 3rd International Congress on 3D Printing (Additive Manufacturing) Technologies and Digital Industry 2018, 19-21 April 2018, Antalya, Turkey, Sayfa 514-521, 2018.
  • 5. Baudish P., Mueller S., Personal Fabrication, Foundations and Trends in Human-Computer Interaction, 10 (3–4); Pages 165–293, 2016.
  • 6. Umetani N., Koyama Y., Schmidt R., Igarashi T., Pteromys: Interactive design and optimization of free-formed free-flight model airplanes. ACM Transaction on Graphics Article, 33,(4), 65, 2014.
  • 7. Shneiderman B., Direct manipulation: A step beyond programming languages, Computer, 16,(8), Pages 57–69, 1983.
  • 8. Willis K. D. D., Xu C., Wu J. K., Levin G., Gross M. D., Interactive fabrication: New interfaces for digital fabrication. In Proceedings of the Fifth International Conference on Tangible, Embedded, and Embodied Interaction (TEI ’11), Pages 69–72, 2011.
  • 9. Osborne 1, Portable Microcomputer, 1981. http://www.computinghistory.org.uk/det/504/osborne-1/
  • 10. Schael T., Workflow Management Systems for Process Organisations, Springer, 208, 2013.
  • 11. Weiser M.The computer for the 21st century. In Mobile Computing and Communications Review -Special issue dedicated to Mark Weiser (SIGMOBILE), 3, (3), Pages 3–11, 1999.
  • 12. Deek F.P., McHugh J. A. M., Open Source: Technology and Policy, Cambridge University Press, 2007.
  • 13. Snavely N., Seitz S. M., Szeliski R., Photo tourism: Exploring photo collections in 3D. ACM Transactions on Graphics, 25,(3), Pages 835–846, 2006.
  • 14. Lafreniere B., Grossman T., Anderson F., Matejka J., Kerrick H., Nagy D., Vasey L., Atherton E., Beirne N., Coelho M. H., Cote N., Li S., Nogueira A., Nguyen L., Schwinn T., Stoddart J., Thomasson D., Wang R., White T., Benjamin D., Conti M., Menges A., Fitzmaurice G., Crowdsourced fabrication, In Proceedings of the 29th Annual Symposium on User Interface Software and Technology (UIST ’16), Pages 15–28, 2016.
  • 15. SGL Group, https://www.sglgroup.com/cms/_common/downloads/innovation/future-carbon-technologies/CARBOPRINT_additiv_manufacturing_with_carbons_e.pdf, 2019.
  • 16. Leigh S.J., Bradley R.J., Purssell C.P., Billson D.R., Hutchins D.A., A Simple, Low-Cost Conductive Composite Material for 3D Printing of Electronic Sensors., PLoS ONE, 7,(11), e49365, 2012. doi:10.1371/journal.pone.0049365
  • 17. Sumita M., Sakata K., Asai S., Miyasaka K., Nakagawa H., Dispersion of fillers and the electrical conductivity of polymer blends filled with carbon black, Polym Bull, 25, Pages 265–271, 1991.
  • 18. Leigh S.J., Polymer Composites for 3D Printing of Functional Sensors and Transducers, IEEE, 2016.
  • 19. Klomp S., Printing Conductive and Non-Conductive Materials Simultaneously on Low-End 3D Printers, Master's dissertation, Universiteit Gent, 2015.
  • 20. Klomp S., Vandevelde C., Saldien J., Printing Conductive and Non-Conductive Material Simultaneously on Low-end 3D Printers, 2015.
  • 21. Molitch-Hou M., Voxel8: 1st Electronics 3D Printer - 3D Printing Industry, 2015. https://3dprintingindustry.com/news/voxel8-unleashes-electronics-3d-printer-ces-world-39060/
  • 22. Voxel8 Unveils New Electronics 3D Printer At 2015 CES-3DPrint.com, http://3dprint.com/35085/voxel8-electronics-3d-printer/.
  • 23. Castillo S., Muse D., Medina F., Macdonald E., Wicker R., Electronics Integration in Conformal Substrates Fabricated with Additive Layered Manufacturing, 730–737, 2009.
  • 24. Frauenfelder M., Make: Ultimate Guide to 3D Printing 2014, Make: Magazine, 2012.
  • 25. Kwok S.W., Goh K.H.H., Tan Z.D., Tan S.T.M., Tjiu W. W., Soh J.Y., Glenn Ng Z. J., Chan Y. Z., Hui H.K., Goh K.E.J., Electrically conductive filament for 3D-printed circuits and sensors, Applied Materials Today, 9, Pages 167–175, 2017.
  • 26. Erik's Bowden Extruder; http://reprap.org/wiki/Erik's_Bowden_Extruder, 2019.
  • 27. Esun, www.esunchina.net, 2019.
  • 28. Proto-Pasta, www.proto-pasta.com, 2019.
  • 29. Makergeeks, www.makergeeks.com, 2019.
  • 30. 3DXTech, www.3dxtech.com, 2019.
  • 31. Zen Toolworks, www.zencnc.com, 2019.
  • 32. Bare, https://www.bareconductive.com, 2019.
  • 33. Bronzefill, https://colorfabb.com/bronzefill, 2019.
  • 34. Ahn B.Y., Duoss E.B., Motala M.J., Guo X., Park S.-I., Xiong Y., Yoon J., Nuzzo R.G., Rogers J.A., Lewis J.A., Omni directional printing of flexible, stretchable,and spanning silver microelectrodes, Science, 323, Pages 1590–1593, 2009.
  • 35. Walker S.B., Lewis J.A., Reactive silver inks for patterning high-conductivity features at mild temperatures, J. Am. Chem. Soc., 134, (3), Pages 1419–1421, 2012.
  • 36. Hohimer C.J., Petrossian G.,Ameli A., Mo C.,Pötschke P., Electrical conductivity and piezoresistive response of 3D printed thermoplastic polyurethane/multiwalled carbon nanotube composites, Proceedings Volume 10596, Behavior and Mechanics of Multifunctional Materials and Composites XII; 105960J), 2018 https://doi.org/10.1117/12.2296774
  • 37. Sugiyama K., Matsuzakia R.,Ueda M., Todoroki A., Hirano Y., 3D printing of composite sandwich structures using continuous carbon fiber and fiber tension, Composites Part A, 113, Pages 114–121, 2018.
  • 38. Willis K. D. D., Brockmeyer E., Hudson S. E., Poupyrev I., Printed optics: 3D printing of embedded optical elements for interactive devices, In Proceedings of the 25th Annual ACM Symposium on User Interface Software and Technology (UIST ’12), Pages 589–598, 2012.
  • 39. Wessely M., Tsandilas T., Mackay W. E., Stretchis: Fabricating highly stretchable user interfaces, In Proceedings of the 29th Annual Symposium on User Interface Software and Technology (UIST ’16), Pages 697–704, 2016.
There are 39 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Review Articles
Authors

Serap Celen

Publication Date April 30, 2019
Submission Date September 7, 2018
Published in Issue Year 2019 Volume: 3 Issue: 1

Cite

APA Celen, S. (2019). 3B KARBON ELEKTRONİK CİHAZ MÜHENDİSLİĞİ: DİJİTAL ENDÜSTRİDE RÖNESANS. International Journal of 3D Printing Technologies and Digital Industry, 3(1), 94-101.
AMA Celen S. 3B KARBON ELEKTRONİK CİHAZ MÜHENDİSLİĞİ: DİJİTAL ENDÜSTRİDE RÖNESANS. IJ3DPTDI. April 2019;3(1):94-101.
Chicago Celen, Serap. “3B KARBON ELEKTRONİK CİHAZ MÜHENDİSLİĞİ: DİJİTAL ENDÜSTRİDE RÖNESANS”. International Journal of 3D Printing Technologies and Digital Industry 3, no. 1 (April 2019): 94-101.
EndNote Celen S (April 1, 2019) 3B KARBON ELEKTRONİK CİHAZ MÜHENDİSLİĞİ: DİJİTAL ENDÜSTRİDE RÖNESANS. International Journal of 3D Printing Technologies and Digital Industry 3 1 94–101.
IEEE S. Celen, “3B KARBON ELEKTRONİK CİHAZ MÜHENDİSLİĞİ: DİJİTAL ENDÜSTRİDE RÖNESANS”, IJ3DPTDI, vol. 3, no. 1, pp. 94–101, 2019.
ISNAD Celen, Serap. “3B KARBON ELEKTRONİK CİHAZ MÜHENDİSLİĞİ: DİJİTAL ENDÜSTRİDE RÖNESANS”. International Journal of 3D Printing Technologies and Digital Industry 3/1 (April 2019), 94-101.
JAMA Celen S. 3B KARBON ELEKTRONİK CİHAZ MÜHENDİSLİĞİ: DİJİTAL ENDÜSTRİDE RÖNESANS. IJ3DPTDI. 2019;3:94–101.
MLA Celen, Serap. “3B KARBON ELEKTRONİK CİHAZ MÜHENDİSLİĞİ: DİJİTAL ENDÜSTRİDE RÖNESANS”. International Journal of 3D Printing Technologies and Digital Industry, vol. 3, no. 1, 2019, pp. 94-101.
Vancouver Celen S. 3B KARBON ELEKTRONİK CİHAZ MÜHENDİSLİĞİ: DİJİTAL ENDÜSTRİDE RÖNESANS. IJ3DPTDI. 2019;3(1):94-101.

download

International Journal of 3D Printing Technologies and Digital Industry is lisenced under Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı