Research Article
BibTex RIS Cite

YATAY VE DİKEY KREMAYER-PİNYON DİŞLİ MEKANİZMALARI KULLANILARAK PARALEL ÇENELİ ROBOTİK TUTUCU TASARIMI, YAPISAL ANALİZİ VE EKLEMELİ İMALAT YÖNTEMİ İLE ÜRETİMİ

Year 2020, Volume: 4 Issue: 2, 139 - 151, 29.08.2020
https://doi.org/10.46519/ij3dptdi.773133

Abstract

Endüstriyel robotlarda uç etkileyiciler vasıtasıyla hedef nesne hareketini sağlamak için kullanılan farklı tipte eyleyici ve mekanizma tabanlı robotik tutucu tasarımları bulunmaktadır. Geleneksel imalat yöntemleri kullanılarak karmaşık geometrili parça tasarımlarının imalat süreçleri maliyetli ve çoğu zaman birden fazla imalat sürecine ihtiyaç duyduğu için uzun zaman ihtiyaçları doğurmaktadır. Bu sebepten ötürü farklı tipteki elektromekanik robotik tutucu tasarımları incelenmiş ve farklı çalışma prensipleri tasarıma entegre edilerek eklemeli imalat yöntemi ile imal edilebilecek iki farklı paralel çeneli robotik tutucu tasarımı geliştirilmiştir. Robotik tutucular tarafından kavranacak nesne hedef hacmi 18×25×10 cm3 ve taşıma ağırlığı 1 kg olacak şekilde tasarım parametreleri belirlenmiştir. Yatay ve dikey kremayer-pinyon dişlileri kullanılarak iki tip paralel çeneli robotik tutucu tasarımı gerçekleştirilmiştir. Tasarımı ve yapısal analizi gerçekleştirilen kremayer-pinyon dişli mekanizmaları ABS filament malzemesi ile eklemeli imalat yöntemi ile üretilmiştir. Prototip üretimi eklemeli imalat yöntemi ile gerçekleştirilen robotik tutucuların işlevsellikleri karşılaştırılmıştır.

Thanks

Kale Arge, Novosim Mühendislik Firmaları ve Gedik Üniversitesine katkılarından dolayı teşekkür ederim.

References

  • Samir R., Bahavesh P., A Review On Grasping Principle and Robotic Grippers, International Journal of Engineering Development and Research, 4 (1), 483-490, 2016.
  • Dilibal S., Guner E., Akturk N. Three-finger SMA robot hand and its practical analysis. Robotica, 20(02), 175-180, 2002.
  • Engeberg E.D., Dilibal S., Vatani M, Choi J.W., Lavery J. Anthropomorphic finger antagonistically actuated by SMA plates. Bioinspiration Biomimetics, 10(5), 1-15, 2015.
  • Dilibal S., Sahin H., Çelik Y. Experimental and numerical analysis on the bending response of the geometrically gradient soft robotics actuator. Archives of Mechanics, 70(5), 391-404, 2018.
  • Mantriota G., Theoretical Model of the Grasp with Vacuum Gripper, Elsevier, 42, 2-17, 2007.
  • Khadeeruddin M., Prasad K., Mohammed R., Design and Analysis of a Two-Jaw Parallel Pneumatic Gripper, International Journal of Computational Engineering Research, 3 (12), 41-46, 2013.
  • Diller E., Sitti M., Three-Dimensional Programmable Assembly by Untethered Magnetic Robotic Micro-Grippers, Advanced Functional Material Journal, 24, 4397-4404, 2014.
  • Monkman G. J., Hesse S., Steinmann R., Schunk H., Robot Grippers, Wiley-Vch, Weinheim, 2004.
  • Krishnamoorthy K., Design and Development Of A Lead Screw Gripper For Robotic Application, An International Journal Mechatroj, 2 (1), 1-12, 2019.
  • Lanni C., Ceccarelli M., An Optimization Problem Algorithm for Kinematic Design of Mechanisms for Two-Finger Grippers, The Open Mechanical Engineering Journal, 3, 49-62, 2009.
  • Nassiraei A., Concept of intelligent mechanical design for autonomous mobile robots, Kyushu Institute of Technology, Fukuoka, 2007.
  • Zhengtao H., Weiwei W., Kensuke H., Designing a Mechanical Tool for Robots with 2-Finger Parallel Grippers, arXiv, 1, 2019.
  • Galeja M, Hejna A, Kosmela P, Kulawik A, (2020) “Static and Dynamic Mechanical Properties of 3D Printed ABS as a Function of Raster Angle”, DOI:10,3390/ma13020297.

PARALLEL JAW ROBOTIC GRIPPER DESIGN AND PRODUCTION WITH ADDITIVE MANUFACTURING METHOD BY USING HORIZONTAL AND VERTICAL RACK AND PINION GEAR MECHANISM

Year 2020, Volume: 4 Issue: 2, 139 - 151, 29.08.2020
https://doi.org/10.46519/ij3dptdi.773133

Abstract

The aim of this paper is to develop original robotic gripper design that can be produced by additive manufacturing method for the mobile warehouse robotic system. There are different types of actuator and mechanism based robotic gripper designs that can be used to moving object in the robotic industry. The manufacturing processes of complex geometry part designs using traditional manufacturing methods create long time requirements, as they are costly and often require multiple manufacturing processes. For this reason, different types of electromechanical robotic gripper systems have been examined. The parallel jaw robotic gripper system that can be produced with additive manufacturing method has been developed by integrating different working principles into the design. Target volume value of the object was determined as 18×25×10 cm3 and target payload was determined as 1 kg. The designed and structurally analyzed rack-pinion gear mechanisms are manufactured with an additive manufacturing method with ABS filament material. The functionality of the robotic grippers, which are produced via additive manufacturing technology, has been compared.

References

  • Samir R., Bahavesh P., A Review On Grasping Principle and Robotic Grippers, International Journal of Engineering Development and Research, 4 (1), 483-490, 2016.
  • Dilibal S., Guner E., Akturk N. Three-finger SMA robot hand and its practical analysis. Robotica, 20(02), 175-180, 2002.
  • Engeberg E.D., Dilibal S., Vatani M, Choi J.W., Lavery J. Anthropomorphic finger antagonistically actuated by SMA plates. Bioinspiration Biomimetics, 10(5), 1-15, 2015.
  • Dilibal S., Sahin H., Çelik Y. Experimental and numerical analysis on the bending response of the geometrically gradient soft robotics actuator. Archives of Mechanics, 70(5), 391-404, 2018.
  • Mantriota G., Theoretical Model of the Grasp with Vacuum Gripper, Elsevier, 42, 2-17, 2007.
  • Khadeeruddin M., Prasad K., Mohammed R., Design and Analysis of a Two-Jaw Parallel Pneumatic Gripper, International Journal of Computational Engineering Research, 3 (12), 41-46, 2013.
  • Diller E., Sitti M., Three-Dimensional Programmable Assembly by Untethered Magnetic Robotic Micro-Grippers, Advanced Functional Material Journal, 24, 4397-4404, 2014.
  • Monkman G. J., Hesse S., Steinmann R., Schunk H., Robot Grippers, Wiley-Vch, Weinheim, 2004.
  • Krishnamoorthy K., Design and Development Of A Lead Screw Gripper For Robotic Application, An International Journal Mechatroj, 2 (1), 1-12, 2019.
  • Lanni C., Ceccarelli M., An Optimization Problem Algorithm for Kinematic Design of Mechanisms for Two-Finger Grippers, The Open Mechanical Engineering Journal, 3, 49-62, 2009.
  • Nassiraei A., Concept of intelligent mechanical design for autonomous mobile robots, Kyushu Institute of Technology, Fukuoka, 2007.
  • Zhengtao H., Weiwei W., Kensuke H., Designing a Mechanical Tool for Robots with 2-Finger Parallel Grippers, arXiv, 1, 2019.
  • Galeja M, Hejna A, Kosmela P, Kulawik A, (2020) “Static and Dynamic Mechanical Properties of 3D Printed ABS as a Function of Raster Angle”, DOI:10,3390/ma13020297.
There are 13 citations in total.

Details

Primary Language Turkish
Subjects Mechanical Engineering
Journal Section Research Article
Authors

Can Özbaran 0000-0001-9630-3345

Savaş Dilibal 0000-0003-4777-7995

Publication Date August 29, 2020
Submission Date July 24, 2020
Published in Issue Year 2020 Volume: 4 Issue: 2

Cite

APA Özbaran, C., & Dilibal, S. (2020). YATAY VE DİKEY KREMAYER-PİNYON DİŞLİ MEKANİZMALARI KULLANILARAK PARALEL ÇENELİ ROBOTİK TUTUCU TASARIMI, YAPISAL ANALİZİ VE EKLEMELİ İMALAT YÖNTEMİ İLE ÜRETİMİ. International Journal of 3D Printing Technologies and Digital Industry, 4(2), 139-151. https://doi.org/10.46519/ij3dptdi.773133
AMA Özbaran C, Dilibal S. YATAY VE DİKEY KREMAYER-PİNYON DİŞLİ MEKANİZMALARI KULLANILARAK PARALEL ÇENELİ ROBOTİK TUTUCU TASARIMI, YAPISAL ANALİZİ VE EKLEMELİ İMALAT YÖNTEMİ İLE ÜRETİMİ. IJ3DPTDI. August 2020;4(2):139-151. doi:10.46519/ij3dptdi.773133
Chicago Özbaran, Can, and Savaş Dilibal. “YATAY VE DİKEY KREMAYER-PİNYON DİŞLİ MEKANİZMALARI KULLANILARAK PARALEL ÇENELİ ROBOTİK TUTUCU TASARIMI, YAPISAL ANALİZİ VE EKLEMELİ İMALAT YÖNTEMİ İLE ÜRETİMİ”. International Journal of 3D Printing Technologies and Digital Industry 4, no. 2 (August 2020): 139-51. https://doi.org/10.46519/ij3dptdi.773133.
EndNote Özbaran C, Dilibal S (August 1, 2020) YATAY VE DİKEY KREMAYER-PİNYON DİŞLİ MEKANİZMALARI KULLANILARAK PARALEL ÇENELİ ROBOTİK TUTUCU TASARIMI, YAPISAL ANALİZİ VE EKLEMELİ İMALAT YÖNTEMİ İLE ÜRETİMİ. International Journal of 3D Printing Technologies and Digital Industry 4 2 139–151.
IEEE C. Özbaran and S. Dilibal, “YATAY VE DİKEY KREMAYER-PİNYON DİŞLİ MEKANİZMALARI KULLANILARAK PARALEL ÇENELİ ROBOTİK TUTUCU TASARIMI, YAPISAL ANALİZİ VE EKLEMELİ İMALAT YÖNTEMİ İLE ÜRETİMİ”, IJ3DPTDI, vol. 4, no. 2, pp. 139–151, 2020, doi: 10.46519/ij3dptdi.773133.
ISNAD Özbaran, Can - Dilibal, Savaş. “YATAY VE DİKEY KREMAYER-PİNYON DİŞLİ MEKANİZMALARI KULLANILARAK PARALEL ÇENELİ ROBOTİK TUTUCU TASARIMI, YAPISAL ANALİZİ VE EKLEMELİ İMALAT YÖNTEMİ İLE ÜRETİMİ”. International Journal of 3D Printing Technologies and Digital Industry 4/2 (August 2020), 139-151. https://doi.org/10.46519/ij3dptdi.773133.
JAMA Özbaran C, Dilibal S. YATAY VE DİKEY KREMAYER-PİNYON DİŞLİ MEKANİZMALARI KULLANILARAK PARALEL ÇENELİ ROBOTİK TUTUCU TASARIMI, YAPISAL ANALİZİ VE EKLEMELİ İMALAT YÖNTEMİ İLE ÜRETİMİ. IJ3DPTDI. 2020;4:139–151.
MLA Özbaran, Can and Savaş Dilibal. “YATAY VE DİKEY KREMAYER-PİNYON DİŞLİ MEKANİZMALARI KULLANILARAK PARALEL ÇENELİ ROBOTİK TUTUCU TASARIMI, YAPISAL ANALİZİ VE EKLEMELİ İMALAT YÖNTEMİ İLE ÜRETİMİ”. International Journal of 3D Printing Technologies and Digital Industry, vol. 4, no. 2, 2020, pp. 139-51, doi:10.46519/ij3dptdi.773133.
Vancouver Özbaran C, Dilibal S. YATAY VE DİKEY KREMAYER-PİNYON DİŞLİ MEKANİZMALARI KULLANILARAK PARALEL ÇENELİ ROBOTİK TUTUCU TASARIMI, YAPISAL ANALİZİ VE EKLEMELİ İMALAT YÖNTEMİ İLE ÜRETİMİ. IJ3DPTDI. 2020;4(2):139-51.

download

International Journal of 3D Printing Technologies and Digital Industry is lisenced under Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı