Research Article
BibTex RIS Cite

POLYACRYLONITRILE (PAN) ELECTROSPUN NANOFIBERS COATED 3D PRINTED PLA MATERIALS WITH DIFFERENT INFILL PATTERNS AND THEIR TENSILE PROPERTIES

Year 2022, Volume: 6 Issue: 2, 307 - 313, 31.08.2022
https://doi.org/10.46519/ij3dptdi.1142097

Abstract

In this study, the mechanical properties of 3D printed polylactic acid (PLA) samples produced with fused deposition modeling (FDM) technology with five different infill patterns; trihexagon, triangle, line, gyroid, and grid, and these patterns were compared for their mechanical properties. In the second part of the study, PLA specimens with different infill patterns were covered with polyacrylonitrile (PAN) nanofibers synthesized by the electrospinning method to enhance their PLA poor mechanical properties. In the tensile tests, among the infill patterns, gyroid showed the highest Young Modulus with 1108 MPa. SEM results showed that PAN electrospun nanofibers were beadless and ordered nanofibers with an average diameter of 165.7±33 nm. The results showed that after PAN nanofibers coating on PLA specimens, the mechanical properties of the samples for all infill patterns improved, and tensile strain values and therefore, ductile behaviour of all specimens increased. PAN nanofibers could significantly enhance the stiffness of 3D printed PLA materials.

Thanks

The author declares that there is no conflict of interest.

References

  • 1. Rismalia, M., Hidajat S., Permana I., Hadisujoto B., Muslimin M., and Triawan F, "Infill pattern and density effects on the tensile properties of 3D printed PLA material", Journal of Physics: Conference Series. IOP Publishing, 2019.
  • 2. Dong, B., Qi G., Gu X., and Wei X., "Web service-oriented manufacturing resource applications for networked product development", Advanced Engineering Informatics, Vol. 22 Issue 3, Pages 282-295, 2008.
  • 3. Medellin-Castillo, H.I. and Zaragoza-Siqueiros J., "Design and manufacturing strategies for fused deposition modelling in additive manufacturing: A review", Chinese Journal of Mechanical Engineering, Vol. 32, Issue 1, Pages 1-16, 2019.
  • 4. Tian, X., Liu T., Yang C., Wang Q., and Li D., "Interface and performance of 3D printed continuous carbon fiber reinforced PLA composites", Composites Part A: Applied Science and Manufacturing, Vol. 88, Pages 198-205, 2016.
  • 5. Tymrak, B., Kreiger M., and Pearce J.M., "Mechanical properties of components fabricated with open-source 3-D printers under realistic environmental conditions", Materials & Design, Vol. 58, Pages 242-246, 2014.
  • 6. Xu, S., Tahon J.-F., De-Waele I., Stoclet G., and Gaucher V., "Brittle-to-ductile transition of PLA induced by macromolecular orientation", Express Polymer Letters, Vol. 14, Issue 11, Pages 1037-1047, 2020.
  • 7. Kottasamy, A., Smaykano, M., Kadirgama, K., Rahman, M., Noor, M.N., "Experimental investigation and prediction model for mechanical properties of copper-reinforced polylactic acid composites (Cu-PLA) using FDM-based 3D printing technique", The International Journal of Advanced Manufacturing Technology, Vol. 119, Pages 5211–5232, 2022.
  • 8. De Bortoli, L.S., de Farias, R., Mezalira, D.Z., Schabbach, L.M., Fredel, M.C., "Functionalized carbon nanotubes for 3D-printed PLA-nanocomposites: Effects on thermal and mechanical properties", Materials Today Communications, Vol. 31, Page 103402, 2022.
  • 9. Teo, W.E. and Ramakrishna S., "A review on electrospinning design and nanofibre assemblies", Nanotechnology, Vol. 17, Issue 14, Page 89, 2006.
  • 10. Bortolassi, A.C.C., Nagarajan S., de Araújo Lima B., Guerra V.G., Aguiar M.L., Huon V., Soussan L., Cornu D., Miele P., and Bechelany M., "Efficient nanoparticles removal and bactericidal action of electrospun nanofibers membranes for air filtration", Materials Science and Engineering: C, Vol. 102, Pages 718-729, 2019.
  • 11. Patanaik, A., Jacobs V., and Anandjiwala R.D., "Performance evaluation of electrospun nanofibrous membrane", Journal of Membrane Science, Vol. 352, Issue (1-2), Pages 136-142, 2010.
  • 12. Yu, D.-G., Zhu L.-M., White K., and Branford-White C., "Electrospun nanofiber-based drug delivery systems", Health, Vol. 1, Issue 2, Pages 67, 2009.
  • 13. Ince Yardimci, A., Baskan O., Yilmaz S., Mese G., Ozcivici E., and Selamet Y., "Osteogenic differentiation of mesenchymal stem cells on random and aligned PAN/PPy nanofibrous scaffolds", Journal of biomaterials applications, Vol, 34, Issue 5, Pages 640-650, 2019.
  • 14. Ince Yardimci, A., Aypek H., Ozturk O., Yilmaz S., Ozcivici E., Mese G., and Selamet Y., "CNT incorporated polyacrilonitrile/polypyrrole nanofibers as keratinocytes scaffold" Journal of Biomimetics, Biomaterials and Biomedical Engineering, Trans Tech Publ, 2019.
  • 15. Unnithan, A.R., Barakat N.A., Nirmala R., Al-Deyab S.S., and Kim H.Y., "Novel electrospun nanofiber mats as effective catalysts for water photosplitting", Ceramics International, Vol., 38, Issue 6, pages 5175-5180, 2012.
  • 16. Huang, L., Xie X., Huang H., Zhu J., Yu J., Wang Y., and Hu Z., "Electrospun polyamide-6 nanofiber for hierarchically structured and multi-responsive actuator", Sensors and Actuators A: Physical, Vol. 302, Pages 111793, 2020.
  • 17. Yardimci, A.İ. and Tarhan Ö., "Electrospun Protein Nanofibers and Their Food Applications", Mugla Journal of Science and Technology, Vol. 6, Issue 2, pages 52-62, 2020.
  • 18. Varshney, K., Tayal N., and Gupta U., "Acrylonitrile based cerium (IV) phosphate as a new mercury selective fibrous ion-exchanger: synthesis, characterization and analytical applications", Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 145, Issue 1-3, Pages 71-81, 1998.
  • 19. Hashmi, M., Ullah S., and Kim I.S., "Copper oxide (CuO) loaded polyacrylonitrile (PAN) nanofiber membranes for antimicrobial breath mask applications", Current Research in Biotechnology, Vol. 1, Pages 1-10, 2019.
  • 20. Chen, T., Bakhshi H., Liu L., Ji J., and Agarwal S., "Combining 3D printing with electrospinning for rapid response and enhanced designability of hydrogel actuators", Advanced Functional Materials, Vol. 28, Issue 19, Page 1800514, 2018.
  • 21. De Mori, A., Peña Fernández M., Blunn G., Tozzi G., and Roldo M., "3D printing and electrospinning of composite hydrogels for cartilage and bone tissue engineering", Polymers, Vol. 10, Issue 3, Pages 285, 2018.
  • 22. Yu, Y., Hua S., Yang M., Fu Z., Teng S., Niu K., Zhao Q., and Yi C., "Fabrication and characterization of electrospinning/3D printing bone tissue engineering scaffold", RSC advances, Vol. 6, Issue 112, Pages 110557-110565, 2016.
  • 23. Wang, Z., Wang, Y., Yan, J., Zhang, K., Lİn, F., Xiang, L., Deng, L., Guan, Z., Cui, W., Zhang, h., "Pharmaceutical electrospinning and 3D printing scaffold design for bone regeneration", Advanced Drug Delivery Rewievs, Vol. 174, Pages 504-534, 2021.
  • 24. Kozior, T., Mamun A., Trabelsi M., Wortmann M., Lilia S., and Ehrmann A., "Electrospinning on 3D printed polymers for mechanically stabilized filter composites", Polymers, Vol. 11, Issue 12, Page 2034, 2019.
  • 25. Rivera, M.L. and Hudson S.E. "Desktop electrospinning: a single extruder 3D printer for producing rigid plastic and electrospun textiles", Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, 2019.
  • 26. ASTM Subcommittee D20. 10 on Mechanical Properties. "Standard Test Method for Tensile Properties of Plastics", American Society for Testing and Materials, 1998.
  • 27. Germain, L., Fuentes C.A., van Vuure A.W., des Rieux A., and Dupont-Gillain C., "3D-printed biodegradable gyroid scaffolds for tissue engineering applications", Materials & Design, Vol. 151, pages 113-122, 2018.
  • 28. Ayrilmis, N., Nagarajan R., and Kuzman M.K., "Effects of the face/core layer ratio on the mechanical properties of 3D printed wood/polylactic acid (PLA) green biocomposite panels with a gyroid core", Polymers, Vol. 12, Issue 12, Pages 2929, 2020.
  • 29. Silva, C., Pais A.I., Caldas G., Gouveia B.P., Alves J.L., and Belinha J., "Study on 3D printing of gyroid-based structures for superior structural behaviour", Progress in Additive Manufacturing, Vol. 6, Issue 4, Pages 689-703, 2021.
  • 30. Aung, S.P.S., Shein H.H.H., Aye K.N., and Nwe N., "Environment-friendly biopolymers for food packaging: Starch, protein, and poly-lactic acid (PLA)", Bio-based Materials for Food Packaging. Springer, Pages 173-195. 2018,
  • 31. Ciftci, F., Ayan, S., Ustundag, C.B., “Desinging and 3D printed PLA based implant used in treatment for unilateral vocal cord paralysis”, Int. J. of 3D Printing Tech. Dig. Ind., Vol. 5, Issue 3, Pages 416-425, (2021).
Year 2022, Volume: 6 Issue: 2, 307 - 313, 31.08.2022
https://doi.org/10.46519/ij3dptdi.1142097

Abstract

References

  • 1. Rismalia, M., Hidajat S., Permana I., Hadisujoto B., Muslimin M., and Triawan F, "Infill pattern and density effects on the tensile properties of 3D printed PLA material", Journal of Physics: Conference Series. IOP Publishing, 2019.
  • 2. Dong, B., Qi G., Gu X., and Wei X., "Web service-oriented manufacturing resource applications for networked product development", Advanced Engineering Informatics, Vol. 22 Issue 3, Pages 282-295, 2008.
  • 3. Medellin-Castillo, H.I. and Zaragoza-Siqueiros J., "Design and manufacturing strategies for fused deposition modelling in additive manufacturing: A review", Chinese Journal of Mechanical Engineering, Vol. 32, Issue 1, Pages 1-16, 2019.
  • 4. Tian, X., Liu T., Yang C., Wang Q., and Li D., "Interface and performance of 3D printed continuous carbon fiber reinforced PLA composites", Composites Part A: Applied Science and Manufacturing, Vol. 88, Pages 198-205, 2016.
  • 5. Tymrak, B., Kreiger M., and Pearce J.M., "Mechanical properties of components fabricated with open-source 3-D printers under realistic environmental conditions", Materials & Design, Vol. 58, Pages 242-246, 2014.
  • 6. Xu, S., Tahon J.-F., De-Waele I., Stoclet G., and Gaucher V., "Brittle-to-ductile transition of PLA induced by macromolecular orientation", Express Polymer Letters, Vol. 14, Issue 11, Pages 1037-1047, 2020.
  • 7. Kottasamy, A., Smaykano, M., Kadirgama, K., Rahman, M., Noor, M.N., "Experimental investigation and prediction model for mechanical properties of copper-reinforced polylactic acid composites (Cu-PLA) using FDM-based 3D printing technique", The International Journal of Advanced Manufacturing Technology, Vol. 119, Pages 5211–5232, 2022.
  • 8. De Bortoli, L.S., de Farias, R., Mezalira, D.Z., Schabbach, L.M., Fredel, M.C., "Functionalized carbon nanotubes for 3D-printed PLA-nanocomposites: Effects on thermal and mechanical properties", Materials Today Communications, Vol. 31, Page 103402, 2022.
  • 9. Teo, W.E. and Ramakrishna S., "A review on electrospinning design and nanofibre assemblies", Nanotechnology, Vol. 17, Issue 14, Page 89, 2006.
  • 10. Bortolassi, A.C.C., Nagarajan S., de Araújo Lima B., Guerra V.G., Aguiar M.L., Huon V., Soussan L., Cornu D., Miele P., and Bechelany M., "Efficient nanoparticles removal and bactericidal action of electrospun nanofibers membranes for air filtration", Materials Science and Engineering: C, Vol. 102, Pages 718-729, 2019.
  • 11. Patanaik, A., Jacobs V., and Anandjiwala R.D., "Performance evaluation of electrospun nanofibrous membrane", Journal of Membrane Science, Vol. 352, Issue (1-2), Pages 136-142, 2010.
  • 12. Yu, D.-G., Zhu L.-M., White K., and Branford-White C., "Electrospun nanofiber-based drug delivery systems", Health, Vol. 1, Issue 2, Pages 67, 2009.
  • 13. Ince Yardimci, A., Baskan O., Yilmaz S., Mese G., Ozcivici E., and Selamet Y., "Osteogenic differentiation of mesenchymal stem cells on random and aligned PAN/PPy nanofibrous scaffolds", Journal of biomaterials applications, Vol, 34, Issue 5, Pages 640-650, 2019.
  • 14. Ince Yardimci, A., Aypek H., Ozturk O., Yilmaz S., Ozcivici E., Mese G., and Selamet Y., "CNT incorporated polyacrilonitrile/polypyrrole nanofibers as keratinocytes scaffold" Journal of Biomimetics, Biomaterials and Biomedical Engineering, Trans Tech Publ, 2019.
  • 15. Unnithan, A.R., Barakat N.A., Nirmala R., Al-Deyab S.S., and Kim H.Y., "Novel electrospun nanofiber mats as effective catalysts for water photosplitting", Ceramics International, Vol., 38, Issue 6, pages 5175-5180, 2012.
  • 16. Huang, L., Xie X., Huang H., Zhu J., Yu J., Wang Y., and Hu Z., "Electrospun polyamide-6 nanofiber for hierarchically structured and multi-responsive actuator", Sensors and Actuators A: Physical, Vol. 302, Pages 111793, 2020.
  • 17. Yardimci, A.İ. and Tarhan Ö., "Electrospun Protein Nanofibers and Their Food Applications", Mugla Journal of Science and Technology, Vol. 6, Issue 2, pages 52-62, 2020.
  • 18. Varshney, K., Tayal N., and Gupta U., "Acrylonitrile based cerium (IV) phosphate as a new mercury selective fibrous ion-exchanger: synthesis, characterization and analytical applications", Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 145, Issue 1-3, Pages 71-81, 1998.
  • 19. Hashmi, M., Ullah S., and Kim I.S., "Copper oxide (CuO) loaded polyacrylonitrile (PAN) nanofiber membranes for antimicrobial breath mask applications", Current Research in Biotechnology, Vol. 1, Pages 1-10, 2019.
  • 20. Chen, T., Bakhshi H., Liu L., Ji J., and Agarwal S., "Combining 3D printing with electrospinning for rapid response and enhanced designability of hydrogel actuators", Advanced Functional Materials, Vol. 28, Issue 19, Page 1800514, 2018.
  • 21. De Mori, A., Peña Fernández M., Blunn G., Tozzi G., and Roldo M., "3D printing and electrospinning of composite hydrogels for cartilage and bone tissue engineering", Polymers, Vol. 10, Issue 3, Pages 285, 2018.
  • 22. Yu, Y., Hua S., Yang M., Fu Z., Teng S., Niu K., Zhao Q., and Yi C., "Fabrication and characterization of electrospinning/3D printing bone tissue engineering scaffold", RSC advances, Vol. 6, Issue 112, Pages 110557-110565, 2016.
  • 23. Wang, Z., Wang, Y., Yan, J., Zhang, K., Lİn, F., Xiang, L., Deng, L., Guan, Z., Cui, W., Zhang, h., "Pharmaceutical electrospinning and 3D printing scaffold design for bone regeneration", Advanced Drug Delivery Rewievs, Vol. 174, Pages 504-534, 2021.
  • 24. Kozior, T., Mamun A., Trabelsi M., Wortmann M., Lilia S., and Ehrmann A., "Electrospinning on 3D printed polymers for mechanically stabilized filter composites", Polymers, Vol. 11, Issue 12, Page 2034, 2019.
  • 25. Rivera, M.L. and Hudson S.E. "Desktop electrospinning: a single extruder 3D printer for producing rigid plastic and electrospun textiles", Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, 2019.
  • 26. ASTM Subcommittee D20. 10 on Mechanical Properties. "Standard Test Method for Tensile Properties of Plastics", American Society for Testing and Materials, 1998.
  • 27. Germain, L., Fuentes C.A., van Vuure A.W., des Rieux A., and Dupont-Gillain C., "3D-printed biodegradable gyroid scaffolds for tissue engineering applications", Materials & Design, Vol. 151, pages 113-122, 2018.
  • 28. Ayrilmis, N., Nagarajan R., and Kuzman M.K., "Effects of the face/core layer ratio on the mechanical properties of 3D printed wood/polylactic acid (PLA) green biocomposite panels with a gyroid core", Polymers, Vol. 12, Issue 12, Pages 2929, 2020.
  • 29. Silva, C., Pais A.I., Caldas G., Gouveia B.P., Alves J.L., and Belinha J., "Study on 3D printing of gyroid-based structures for superior structural behaviour", Progress in Additive Manufacturing, Vol. 6, Issue 4, Pages 689-703, 2021.
  • 30. Aung, S.P.S., Shein H.H.H., Aye K.N., and Nwe N., "Environment-friendly biopolymers for food packaging: Starch, protein, and poly-lactic acid (PLA)", Bio-based Materials for Food Packaging. Springer, Pages 173-195. 2018,
  • 31. Ciftci, F., Ayan, S., Ustundag, C.B., “Desinging and 3D printed PLA based implant used in treatment for unilateral vocal cord paralysis”, Int. J. of 3D Printing Tech. Dig. Ind., Vol. 5, Issue 3, Pages 416-425, (2021).
There are 31 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Research Article
Authors

Atike İnce Yardımcı 0000-0001-5482-4230

Early Pub Date July 22, 2022
Publication Date August 31, 2022
Submission Date July 7, 2022
Published in Issue Year 2022 Volume: 6 Issue: 2

Cite

APA İnce Yardımcı, A. (2022). POLYACRYLONITRILE (PAN) ELECTROSPUN NANOFIBERS COATED 3D PRINTED PLA MATERIALS WITH DIFFERENT INFILL PATTERNS AND THEIR TENSILE PROPERTIES. International Journal of 3D Printing Technologies and Digital Industry, 6(2), 307-313. https://doi.org/10.46519/ij3dptdi.1142097
AMA İnce Yardımcı A. POLYACRYLONITRILE (PAN) ELECTROSPUN NANOFIBERS COATED 3D PRINTED PLA MATERIALS WITH DIFFERENT INFILL PATTERNS AND THEIR TENSILE PROPERTIES. IJ3DPTDI. August 2022;6(2):307-313. doi:10.46519/ij3dptdi.1142097
Chicago İnce Yardımcı, Atike. “POLYACRYLONITRILE (PAN) ELECTROSPUN NANOFIBERS COATED 3D PRINTED PLA MATERIALS WITH DIFFERENT INFILL PATTERNS AND THEIR TENSILE PROPERTIES”. International Journal of 3D Printing Technologies and Digital Industry 6, no. 2 (August 2022): 307-13. https://doi.org/10.46519/ij3dptdi.1142097.
EndNote İnce Yardımcı A (August 1, 2022) POLYACRYLONITRILE (PAN) ELECTROSPUN NANOFIBERS COATED 3D PRINTED PLA MATERIALS WITH DIFFERENT INFILL PATTERNS AND THEIR TENSILE PROPERTIES. International Journal of 3D Printing Technologies and Digital Industry 6 2 307–313.
IEEE A. İnce Yardımcı, “POLYACRYLONITRILE (PAN) ELECTROSPUN NANOFIBERS COATED 3D PRINTED PLA MATERIALS WITH DIFFERENT INFILL PATTERNS AND THEIR TENSILE PROPERTIES”, IJ3DPTDI, vol. 6, no. 2, pp. 307–313, 2022, doi: 10.46519/ij3dptdi.1142097.
ISNAD İnce Yardımcı, Atike. “POLYACRYLONITRILE (PAN) ELECTROSPUN NANOFIBERS COATED 3D PRINTED PLA MATERIALS WITH DIFFERENT INFILL PATTERNS AND THEIR TENSILE PROPERTIES”. International Journal of 3D Printing Technologies and Digital Industry 6/2 (August 2022), 307-313. https://doi.org/10.46519/ij3dptdi.1142097.
JAMA İnce Yardımcı A. POLYACRYLONITRILE (PAN) ELECTROSPUN NANOFIBERS COATED 3D PRINTED PLA MATERIALS WITH DIFFERENT INFILL PATTERNS AND THEIR TENSILE PROPERTIES. IJ3DPTDI. 2022;6:307–313.
MLA İnce Yardımcı, Atike. “POLYACRYLONITRILE (PAN) ELECTROSPUN NANOFIBERS COATED 3D PRINTED PLA MATERIALS WITH DIFFERENT INFILL PATTERNS AND THEIR TENSILE PROPERTIES”. International Journal of 3D Printing Technologies and Digital Industry, vol. 6, no. 2, 2022, pp. 307-13, doi:10.46519/ij3dptdi.1142097.
Vancouver İnce Yardımcı A. POLYACRYLONITRILE (PAN) ELECTROSPUN NANOFIBERS COATED 3D PRINTED PLA MATERIALS WITH DIFFERENT INFILL PATTERNS AND THEIR TENSILE PROPERTIES. IJ3DPTDI. 2022;6(2):307-13.

download

International Journal of 3D Printing Technologies and Digital Industry is lisenced under Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı