Research Article
BibTex RIS Cite

AĞIRLIK AZALTMA AMACIYLA ELEKTRON IŞINI İLE ERGİTME YÖNTEMİYLE ÜRETİLEN BİR UÇAK PARÇASININ TASARIMI, TOPOLOJİ OPTİMİZASYONU VE TESTİ

Year 2022, Volume: 6 Issue: 2, 207 - 217, 31.08.2022
https://doi.org/10.46519/ij3dptdi.993983

Abstract

Bu çalışmanın amacı, konvansiyonel üretim kısıtlarına uygun olarak tasarlanan bir uçak parçasının, topoloji optimizasyonu yöntemleri kullanılarak, aynı yükleme koşullarına dayanacak şekilde, ağırlığının azaltılabileceğini göstermektir. Bu amaçla, optimizasyon sonucu elde edilen parça geometrisi, sonlu elamanlar analizine tabi tutulmuş ve aynı yükleme koşullarında plastik deformasyon göstermediği gösterilmiştir. Optimize edilmiş geometri, elektron ışınıyla ergitme (EIE) yöntemiyle, Ti6Al4V malzemeden üretilmiş ve parçada meydana gelen boyutsal sapmalar ölçülmüştür. Ölçüm sonuçlarından elde edilen sapmaların, montaj toleransları dahilinde olduğu görülmüştür. Son olarak, üretilen parça statik teste tabi tutulmuş ve numerik sonuçlar ile test sonuçlarının uyumlu olduğu gösterilmiştir. Bütün bu çalışmalar neticesinde, bir uçak parçasının topoloji optimizasyonu ile, aynı yükleme koşullarına dayanacak şekilde, ağırlığının %40.7 oranında azaltılabileceği, EIE yöntemiyle başarılı bir şekilde üretilebileceği ve test verilerine dayanarak, uçakta kullanılabileceği gösterilmiştir.

References

  • 1. Najmon, J. C., Raeisi, S. and Tovar, A., “Review of additive manufacturing technologies and applications in the aerospace industry”, Additive Manufacturing for the Aerospace Industry, Elsevier Publishing, Amsterdam, Netherlands, Pages 7-31, 2019.
  • 2. Avila, J. D., Bose, S. and Bandyopadhyay, A., “Additive manufacturing of titanium and titanium alloys for biomedical applications”, Titanium in Medical and Dental Applications, Woodhead Publishing Series in Biomaterials, Pages 325-343, 2018.
  • 3. Herzog, D., Seyda, V., Wycisk, E. and Emmelmann, C., “Additive manufacturing of metals”, Acta Materialia, Vol. 117, Pages 371-392, 2016.
  • 4. Flores, I., Kretzschmar, N., Azman, A. H., Chekurov, S., Pedersen, D. B. and Chaudhuri, A., “Implications of lattice structures on economics and productivity of metal powder bed fusion”, Additive Manufacturing, Vol. 31, Pages 100947, 2020.
  • 5. Gülcan, O., Günaydın, K. and Tamer, A., “The state of the art of material jetting—a critical review”, Polymers, Vol. 13, Issue 16, Pages 2829, 2021.
  • 6. Zhang, L., Wang, J., Liu, Y., Jia, Z. and Liang, S., “Additive manufacturing of titanium alloys”, Encyclopedia of Materials: Metals and Allloys, Elsevier Publishing, Amsterdam, Netherlands, Pages 256-274, 2022.
  • 7. Antonysamy, A., Meyer, J. and Prangnell, P., “Effect of build geometryon the β-grain structure and texture in additive manufacture of Ti6Al4V by selective electron beam melting”, Materials Characterization, Vol. 84, Pages 153-168, 2013.
  • 8. Gülcan, O., Şimşek, U. ve Kavas, B., “Eklemeli imalatla üretilen işlevsel olarak derecelendirilmiş metal yapılar”, Mühendis ve Makina, Cilt 62, Sayı 702, Sayfa 1-22, 2021.
  • 9. Zegard, T. and Paulino, G. H., “Bridging topology optimization and additive manufacturing”, Structural and Multidisciplinary Optimization, Vol. 53, Pages 175-192, 2016.
  • 10. İnternet: Vasudeva, R. and Soundararajan S., “Optimization of front axle mounts vibration characteristics for driveline integration with chassis”, General Motors Technical Center, India. https://www.altairatc.com/, Mayıs 23, 2022.
  • 11. İnternet: Sreedhar, B. and Sasidhar, N., “Optimization of mounting bracket”, Hyundai Motor, India. https://www.altairatc.com/, Mayıs 23, 2022.
  • 12. Marchesi, T. R., Lahuerta, R. D., Silva, E. C., Tsuzuki, M. S., Martins, T. C., Barari, A. and Wood, I., “Topologically optimized diesel engine support manufactured with additive manufacturing”, IFAC-PapersOnLine, Vol. 48, Issue 3, Pages 2333-2338, 2015.
  • 13. Viqaruddin, M. and Reddy, D. R., “Structural optimization of control arm for weight reduction and improved performance”, Materials Today: Proceedings, Vol. 4, Issue 8, Pages 9230-9236, 2017.
  • 14. Walton, D. and Moztarzadeh, H., “Design and development of an additive manufactured component by topology optimization”, Procedia CIRP, Vol. 60, Pages 205-210, 2017.
  • 15. Li, D., Liao, W., Dai, N., Dong, G., Tang, Y. and Xie, Y. M., “Optimal design and modeling of gyroid-based functionally graded cellular structures for additive manufacturing”, Computer-Aided Design, Vol. 104, Pages 87-99, 2018.
  • 16. Bassoli, E., Defanti, S., Tognoli, E., Vincenzi, N. and Esposti, L. D., “Design for additive manufacturing and for machining in the automotive field”, Applied Sciences, Vol. 11, Issue 16, Pages 7559, 2021.
  • 17. Gülcan, O., “Eklemeli imalatla üretilen kafes yapıların mekanik özellikleri” Makina Tasarım ve İmalat Dergisi, Cilt 19, Sayı 1, Sayfa 17-34, 2021.
  • 18. Dallago, M., Zanini, F., Carmignato, S., Pasini, D. and Benedetti, M., “Effect of the geometrical defectiveness on the mechanical properties of SLM biomedical Ti6Al4V lattices”, Procedia Structural Integrity, Vol. 13, Pages 161-167, 2018.
  • 19. Bartolomeu, F., Dourado, N., Pereira, F., Alves, N., Miranda, G. and Silva, F. S., “Additive manufactured porous biomaterials targeting orthopedic implants: A suitable combination of mechanical, physical and topological properties”, Material Science and Engineering C, Vol. 107, Pages 110342, 2020.
  • 20. Ran, Q., Yang, W., Hu, Y., Shen, X., Yu, Y., Xiang, Y. and Cai, K., “Osteogenesis of 3D printed porous Ti6Al4V implants with different pore sizes”, Journal of Mechanical Behavior of Biomedical Materials, Vol. 84, Pages 1-11, 2018.
  • 21. Wang, D., Wu, S., Bai, Y., Lin, H., Yang, Y. and Song, C., “Characteristics of typical geometrical features shaped by selective laser melting”, Journal of Laser Applications, Vol. 29, Issue 2, Pages 22007, 2017.
  • 22. Calignano, F., “Investigation of the accuracy and roughness in the laser powder bed fusion process”, Virtual Physics Prototyping, Vol. 13, Issue 2, Pages 97-104, 2018.
  • 23. Ahmed, A., Majeed, A., Atta, Z. and Jia, G., “Dimensional quality and distortion analysis of thin-walled alloy parts of AlSi10Mg manufactured by selective laser melting”, Journal of Manufacturing and Materials Processing, Vol. 3, Issue 2, Pages 51, 2019.
  • 24. Yan, C., Hao, L., Hussein, A., Young, P. and Raymont, D., “Advanced lightweight 316L stainless steel cellular lattice structures fabricated via selective laser melting”, Materials and Design, Vol. 55, Pages 533-541, 2014.
  • 25. Maran, S., Masters, I. G. and Gibbons, G. J., “Additive manufacture of 3D auxetic structures by laser powder bed fusion—design influence on manufacturing accuracy and mechanical properties”, Applied Sciences, Vol. 10, Issue 21, Pages 7738, 2020.
  • 26. Kuo, Y. H. and Cheng, C. C., “Self-supporting structure design for additive manufacturing by using a logistic aggregate function”, Structural and Multidisciplinary Optimization, Vol. 60, Pages 1109-1121, 2019.
  • 27. Gülcan, O., Yiğitbaşı S. T. ve Konukseven, E. İ., “Elektron ışınıyla ergitme yöntemiyle üretilen ti6al4v parçalarının mekanik özellikleri üzerinde inşa yönünün etkisi”, Makina Tasarım ve İmalat Dergisi, Cilt 19, Sayı 1, Sayfa 1-9, 2021.
  • 28. Gülcan O., Konukseven E. İ. Ve Yiğitbaşı S. T., “Katmanlı imalatla üretilen ti6al4v parçalarının mekanik özellikleri” Makina Tasarım ve İmalat Dergisi, Cilt 15, Sayı 1, Sayfa 27-37, 2017.

DESIGN, TOPOLOGY OPTIMIZATION AND TESTING OF AN AIRCRAFT PART PRODUCED BY ELECTRIN BEAM MELTING FOR WEIGHT REDUCTION

Year 2022, Volume: 6 Issue: 2, 207 - 217, 31.08.2022
https://doi.org/10.46519/ij3dptdi.993983

Abstract

The aim of this study is to show that weight of an aircraft part designed based on conventional manufacturing restrictions can be reduced by using topology optimization methods along with withstanding the same loading conditions. For this purpose, the geometry of the part obtained by optimization was subjected to finite elements analysis and no plastic deformation under the same loading conditions was observed. Optimized geometry was produced by electron beam melting (EBM) method with Ti6Al4V material and dimensional deviations in the produced part were measured. The deviations from the measurement results were found to be within the installation tolerances. Finally, the produced part was subjected to static testing and it was shown that numerical results and test results were found to be compatible. As a result of all these studies, it was shown that the weight of an aircraft part withstanding the same loading conditions can be reduced by 40.7 % by using topology optimization method, produced successfully by EBM method and used in aircraft based on test data.

References

  • 1. Najmon, J. C., Raeisi, S. and Tovar, A., “Review of additive manufacturing technologies and applications in the aerospace industry”, Additive Manufacturing for the Aerospace Industry, Elsevier Publishing, Amsterdam, Netherlands, Pages 7-31, 2019.
  • 2. Avila, J. D., Bose, S. and Bandyopadhyay, A., “Additive manufacturing of titanium and titanium alloys for biomedical applications”, Titanium in Medical and Dental Applications, Woodhead Publishing Series in Biomaterials, Pages 325-343, 2018.
  • 3. Herzog, D., Seyda, V., Wycisk, E. and Emmelmann, C., “Additive manufacturing of metals”, Acta Materialia, Vol. 117, Pages 371-392, 2016.
  • 4. Flores, I., Kretzschmar, N., Azman, A. H., Chekurov, S., Pedersen, D. B. and Chaudhuri, A., “Implications of lattice structures on economics and productivity of metal powder bed fusion”, Additive Manufacturing, Vol. 31, Pages 100947, 2020.
  • 5. Gülcan, O., Günaydın, K. and Tamer, A., “The state of the art of material jetting—a critical review”, Polymers, Vol. 13, Issue 16, Pages 2829, 2021.
  • 6. Zhang, L., Wang, J., Liu, Y., Jia, Z. and Liang, S., “Additive manufacturing of titanium alloys”, Encyclopedia of Materials: Metals and Allloys, Elsevier Publishing, Amsterdam, Netherlands, Pages 256-274, 2022.
  • 7. Antonysamy, A., Meyer, J. and Prangnell, P., “Effect of build geometryon the β-grain structure and texture in additive manufacture of Ti6Al4V by selective electron beam melting”, Materials Characterization, Vol. 84, Pages 153-168, 2013.
  • 8. Gülcan, O., Şimşek, U. ve Kavas, B., “Eklemeli imalatla üretilen işlevsel olarak derecelendirilmiş metal yapılar”, Mühendis ve Makina, Cilt 62, Sayı 702, Sayfa 1-22, 2021.
  • 9. Zegard, T. and Paulino, G. H., “Bridging topology optimization and additive manufacturing”, Structural and Multidisciplinary Optimization, Vol. 53, Pages 175-192, 2016.
  • 10. İnternet: Vasudeva, R. and Soundararajan S., “Optimization of front axle mounts vibration characteristics for driveline integration with chassis”, General Motors Technical Center, India. https://www.altairatc.com/, Mayıs 23, 2022.
  • 11. İnternet: Sreedhar, B. and Sasidhar, N., “Optimization of mounting bracket”, Hyundai Motor, India. https://www.altairatc.com/, Mayıs 23, 2022.
  • 12. Marchesi, T. R., Lahuerta, R. D., Silva, E. C., Tsuzuki, M. S., Martins, T. C., Barari, A. and Wood, I., “Topologically optimized diesel engine support manufactured with additive manufacturing”, IFAC-PapersOnLine, Vol. 48, Issue 3, Pages 2333-2338, 2015.
  • 13. Viqaruddin, M. and Reddy, D. R., “Structural optimization of control arm for weight reduction and improved performance”, Materials Today: Proceedings, Vol. 4, Issue 8, Pages 9230-9236, 2017.
  • 14. Walton, D. and Moztarzadeh, H., “Design and development of an additive manufactured component by topology optimization”, Procedia CIRP, Vol. 60, Pages 205-210, 2017.
  • 15. Li, D., Liao, W., Dai, N., Dong, G., Tang, Y. and Xie, Y. M., “Optimal design and modeling of gyroid-based functionally graded cellular structures for additive manufacturing”, Computer-Aided Design, Vol. 104, Pages 87-99, 2018.
  • 16. Bassoli, E., Defanti, S., Tognoli, E., Vincenzi, N. and Esposti, L. D., “Design for additive manufacturing and for machining in the automotive field”, Applied Sciences, Vol. 11, Issue 16, Pages 7559, 2021.
  • 17. Gülcan, O., “Eklemeli imalatla üretilen kafes yapıların mekanik özellikleri” Makina Tasarım ve İmalat Dergisi, Cilt 19, Sayı 1, Sayfa 17-34, 2021.
  • 18. Dallago, M., Zanini, F., Carmignato, S., Pasini, D. and Benedetti, M., “Effect of the geometrical defectiveness on the mechanical properties of SLM biomedical Ti6Al4V lattices”, Procedia Structural Integrity, Vol. 13, Pages 161-167, 2018.
  • 19. Bartolomeu, F., Dourado, N., Pereira, F., Alves, N., Miranda, G. and Silva, F. S., “Additive manufactured porous biomaterials targeting orthopedic implants: A suitable combination of mechanical, physical and topological properties”, Material Science and Engineering C, Vol. 107, Pages 110342, 2020.
  • 20. Ran, Q., Yang, W., Hu, Y., Shen, X., Yu, Y., Xiang, Y. and Cai, K., “Osteogenesis of 3D printed porous Ti6Al4V implants with different pore sizes”, Journal of Mechanical Behavior of Biomedical Materials, Vol. 84, Pages 1-11, 2018.
  • 21. Wang, D., Wu, S., Bai, Y., Lin, H., Yang, Y. and Song, C., “Characteristics of typical geometrical features shaped by selective laser melting”, Journal of Laser Applications, Vol. 29, Issue 2, Pages 22007, 2017.
  • 22. Calignano, F., “Investigation of the accuracy and roughness in the laser powder bed fusion process”, Virtual Physics Prototyping, Vol. 13, Issue 2, Pages 97-104, 2018.
  • 23. Ahmed, A., Majeed, A., Atta, Z. and Jia, G., “Dimensional quality and distortion analysis of thin-walled alloy parts of AlSi10Mg manufactured by selective laser melting”, Journal of Manufacturing and Materials Processing, Vol. 3, Issue 2, Pages 51, 2019.
  • 24. Yan, C., Hao, L., Hussein, A., Young, P. and Raymont, D., “Advanced lightweight 316L stainless steel cellular lattice structures fabricated via selective laser melting”, Materials and Design, Vol. 55, Pages 533-541, 2014.
  • 25. Maran, S., Masters, I. G. and Gibbons, G. J., “Additive manufacture of 3D auxetic structures by laser powder bed fusion—design influence on manufacturing accuracy and mechanical properties”, Applied Sciences, Vol. 10, Issue 21, Pages 7738, 2020.
  • 26. Kuo, Y. H. and Cheng, C. C., “Self-supporting structure design for additive manufacturing by using a logistic aggregate function”, Structural and Multidisciplinary Optimization, Vol. 60, Pages 1109-1121, 2019.
  • 27. Gülcan, O., Yiğitbaşı S. T. ve Konukseven, E. İ., “Elektron ışınıyla ergitme yöntemiyle üretilen ti6al4v parçalarının mekanik özellikleri üzerinde inşa yönünün etkisi”, Makina Tasarım ve İmalat Dergisi, Cilt 19, Sayı 1, Sayfa 1-9, 2021.
  • 28. Gülcan O., Konukseven E. İ. Ve Yiğitbaşı S. T., “Katmanlı imalatla üretilen ti6al4v parçalarının mekanik özellikleri” Makina Tasarım ve İmalat Dergisi, Cilt 15, Sayı 1, Sayfa 27-37, 2017.
There are 28 citations in total.

Details

Primary Language Turkish
Subjects Engineering, Mechanical Engineering
Journal Section Research Article
Authors

Orhan Gülcan 0000-0002-6688-2662

Barış Sokollu 0000-0002-6453-9860

Selen Temel Yiğitbaşı 0000-0001-7596-681X

Erhan İlhan Konukseven 0000-0002-3597-4222

Early Pub Date July 22, 2022
Publication Date August 31, 2022
Submission Date September 16, 2021
Published in Issue Year 2022 Volume: 6 Issue: 2

Cite

APA Gülcan, O., Sokollu, B., Temel Yiğitbaşı, S., Konukseven, E. İ. (2022). AĞIRLIK AZALTMA AMACIYLA ELEKTRON IŞINI İLE ERGİTME YÖNTEMİYLE ÜRETİLEN BİR UÇAK PARÇASININ TASARIMI, TOPOLOJİ OPTİMİZASYONU VE TESTİ. International Journal of 3D Printing Technologies and Digital Industry, 6(2), 207-217. https://doi.org/10.46519/ij3dptdi.993983
AMA Gülcan O, Sokollu B, Temel Yiğitbaşı S, Konukseven Eİ. AĞIRLIK AZALTMA AMACIYLA ELEKTRON IŞINI İLE ERGİTME YÖNTEMİYLE ÜRETİLEN BİR UÇAK PARÇASININ TASARIMI, TOPOLOJİ OPTİMİZASYONU VE TESTİ. IJ3DPTDI. August 2022;6(2):207-217. doi:10.46519/ij3dptdi.993983
Chicago Gülcan, Orhan, Barış Sokollu, Selen Temel Yiğitbaşı, and Erhan İlhan Konukseven. “AĞIRLIK AZALTMA AMACIYLA ELEKTRON IŞINI İLE ERGİTME YÖNTEMİYLE ÜRETİLEN BİR UÇAK PARÇASININ TASARIMI, TOPOLOJİ OPTİMİZASYONU VE TESTİ”. International Journal of 3D Printing Technologies and Digital Industry 6, no. 2 (August 2022): 207-17. https://doi.org/10.46519/ij3dptdi.993983.
EndNote Gülcan O, Sokollu B, Temel Yiğitbaşı S, Konukseven Eİ (August 1, 2022) AĞIRLIK AZALTMA AMACIYLA ELEKTRON IŞINI İLE ERGİTME YÖNTEMİYLE ÜRETİLEN BİR UÇAK PARÇASININ TASARIMI, TOPOLOJİ OPTİMİZASYONU VE TESTİ. International Journal of 3D Printing Technologies and Digital Industry 6 2 207–217.
IEEE O. Gülcan, B. Sokollu, S. Temel Yiğitbaşı, and E. İ. Konukseven, “AĞIRLIK AZALTMA AMACIYLA ELEKTRON IŞINI İLE ERGİTME YÖNTEMİYLE ÜRETİLEN BİR UÇAK PARÇASININ TASARIMI, TOPOLOJİ OPTİMİZASYONU VE TESTİ”, IJ3DPTDI, vol. 6, no. 2, pp. 207–217, 2022, doi: 10.46519/ij3dptdi.993983.
ISNAD Gülcan, Orhan et al. “AĞIRLIK AZALTMA AMACIYLA ELEKTRON IŞINI İLE ERGİTME YÖNTEMİYLE ÜRETİLEN BİR UÇAK PARÇASININ TASARIMI, TOPOLOJİ OPTİMİZASYONU VE TESTİ”. International Journal of 3D Printing Technologies and Digital Industry 6/2 (August 2022), 207-217. https://doi.org/10.46519/ij3dptdi.993983.
JAMA Gülcan O, Sokollu B, Temel Yiğitbaşı S, Konukseven Eİ. AĞIRLIK AZALTMA AMACIYLA ELEKTRON IŞINI İLE ERGİTME YÖNTEMİYLE ÜRETİLEN BİR UÇAK PARÇASININ TASARIMI, TOPOLOJİ OPTİMİZASYONU VE TESTİ. IJ3DPTDI. 2022;6:207–217.
MLA Gülcan, Orhan et al. “AĞIRLIK AZALTMA AMACIYLA ELEKTRON IŞINI İLE ERGİTME YÖNTEMİYLE ÜRETİLEN BİR UÇAK PARÇASININ TASARIMI, TOPOLOJİ OPTİMİZASYONU VE TESTİ”. International Journal of 3D Printing Technologies and Digital Industry, vol. 6, no. 2, 2022, pp. 207-1, doi:10.46519/ij3dptdi.993983.
Vancouver Gülcan O, Sokollu B, Temel Yiğitbaşı S, Konukseven Eİ. AĞIRLIK AZALTMA AMACIYLA ELEKTRON IŞINI İLE ERGİTME YÖNTEMİYLE ÜRETİLEN BİR UÇAK PARÇASININ TASARIMI, TOPOLOJİ OPTİMİZASYONU VE TESTİ. IJ3DPTDI. 2022;6(2):207-1.

download

International Journal of 3D Printing Technologies and Digital Industry is lisenced under Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı