Research Article
BibTex RIS Cite

EFFECT OF PRINTING SPEED ON FDM 3D-PRINTED PLA SAMPLES PRODUCED USING DIFFERENT TWO PRINTERS

Year 2022, Volume: 6 Issue: 3, 438 - 448, 31.12.2022
https://doi.org/10.46519/ij3dptdi.1088805

Abstract

Today, 3D manufacturing technologies are shown as candidates to replace traditional manufacturing technologies. In this direction, many studies are carried out to reduce the disadvantages of 3D manufacturing technologies. The first few of these disadvantages are; high production cost, slow production speed, and lower strength values of the produced product compared to traditional methods. Increasing or decreasing the printing speed, which is one of the 3d production parameters, appears as a parameter that will directly affect the strength and production costs of the produced product. For this reason, it is important to determine the effects that may occur on the mechanical properties of the product produced by changing the printing speed in terms of choosing the printing speed according to the intended use of the product. In this study, the effect of desktop Fused Deposition Modelling (FDM) 3D printing speed on mechanical properties was investigated. Tensile test samples were produced using Polylactic Acid (PLA) material at seven different printing speeds using two different 3D printers operated without bed heating. The mass, hardness, surface roughness, and porosity values of the produced samples were determined. Fractured surfaces of the samples were analyzed using Scanning electron microscopy (SEM) images. The results show that an increase in the printing speed decreases the mass, the top surface hardness, and the tensile strength and increases the porosity, the arithmetic average roughness of the products produced with both 3D printers.

Supporting Institution

Scientific Research Projects Coordination Unit of the Rectorate of Inonu University

Project Number

FDK-2020-2351

Thanks

This work; was supported by the Scientific Research Projects Coordination Unit of the Rectorate of Inonu University with the project number FDK-2020-2351. We would like to thank Inonu University for its valuable contributions.

References

  • 1. Ngo, T.D., Kashani, A., Imbalzano, G., Nguyen, K.T.Q., Hui, D., “Additive manufacturing (3D printing): A review of materials, methods, applications and challenges”, Composite Part B: Engineering, Vol. 143, Pages 172-196, 2018.
  • 2. Popescu, D., Zapciu, A., Amza, C., Baciu, F., Marinescu, R., “FDM process parameters influence over the mechanical properties of polymer specimens: A review”, Polymer Testing, Vol. 69, Pages 157-166, 2018.
  • 3. Yaman, U., Butt, N., Sacks, E., Hoffmann C., “Slice coherence in a query-based architecture for 3D heterogeneous printing”, Computer-Aided Design, Vol. 75-76, Pages 27-38, 2016.
  • 4. Beran, T., Mulholland, T., Henning, F., Rudolph, N., Osswald, T.A., “Nozzle clogging factors during fused filament fabrication of spherical particle filled polymers”, Additive Manufacturing, Vol. 23, Pages 206-214, 2018.
  • 5. Osswald, T.A., Puentes, J., Kattinger, J., “Fused filament fabrication melting model”, Additive Manufacturing, Vol. 22, Pages 51-59, 2018.
  • 6. Yaman, U., “Shrinkage compensation of holes via shrinkage of interior structure in FDM process”, The International Journal of Advanced Manufacturing Technology, Vol. 94, Pages 2187-2197, 2018.
  • 7. Dilberoglu, U.M., Simsek, S., Yaman, U., “Shrinkage compensation approach proposed for ABS material in FDM process”, Materials and Manufacturing Processes, Vol. 34, Pages 993-998, 2019.
  • 8. Mazzei Capote, G.A., Rudolph, N.M., Osswald, P.V., Osswald, T.A., “Failure surface development for ABS fused filament fabrication parts” Additive Manufacturing, Vol. 28, Pages 169-175, 2019.
  • 9. Graziosi, S., Cannazza, F., Vedani, M., Ratti, A., Tamburrino, F., Bordegoni, M., “Design and testing of an innovative 3D-printed metal-composite junction” Additive Manufacturing, Vol. 36, Issue 101311, Pages 1-18, 2020.
  • 10. Kamer, M.S., Doğan, O., Temiz, Ş., Yaykaşlı, H., “3 Boyutlu yazıcı ile farklı yazdırma parametreleri kullanılarak üretilen eğme test numunelerinin mekanik özelliklerinin incelenmesi” [Investigation of the mechanical properties of flexural test samples produced using different printing parameters with a 3D printer], Cukurova University Journal of the Faculty of Engineering, Vol. 36, Issue 3, Pages 835-846, 2021.
  • 11. Kamer, M.S., Temiz, Ş., “3 Boyutlu yazıcıda ABS ve PLA filamentler ile farklı tabla ve nozul sıcaklıkları kullanılarak üretilen çekme test numunelerinin mekanik özelliklerinin araştırılması” [Investigation of the mechanical properties of tensile test samples produced with a 3D printer using different bed and nozzle temperatures with ABS and PLA filaments], Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, Vol. 24, Issue 4, Pages 341-358, 2021.
  • 12. Kamer, M.S., Temiz, Ş., Yaykaşlı, H., Kaya, A., “3 Boyutlu yazıcı ile farklı renklerde ve farklı dolgu desenlerinde üretilen çekme test numunelerinin mekanik özelliklerinin incelenmesi” [Investigation of the mechanical properties of tensile test samples produced in different colors and different infill patterns with a 3D printer], Uludag University Journal of the Faculty of Engineering, Vol. 26, Issue 3, Pages 829-848, 2021.
  • 13. Karabeyoglu, S.S., Eksi, O., Yaman, P., Kucukyildirim, B.O., “Effects of infill pattern and density on wear performance of FDM-printed acrylonitrile-butadiene-styrene parts”, Journal of Polymer Engineering, Vol. 41, Issue 10, Pages 854-862, 2021.
  • 14. Tognana, S., Montecinos, S., Gastien, R. Salgueiro, W., “Influence of fabrication parameters on the elastic modulus and characteristic stresses in 3D printed PLA samples produced via fused deposition modelling technique”, Journal of Polymer Engineering, Vol. 41, Issue 6, Pages 490-498, 2021.
  • 15. Dobos, J., Hanon, M.M., Oldal, I., “Effect of infill density and pattern on the specific load capacity of FDM 3D-printed PLA multi-layer sandwich”, Journal of Polymer Engineering, Vol. 42, Issue 2, Pages 118-128, 2022.
  • 16. Sood, A.K., Ohdar, R.K., Mahapatra, S.S., “Parametric appraisal of mechanical property of fused deposition modelling processed parts” Materials Design, Vol. 31, Issue 1, Pages 287-295, 2010.
  • 17. Chacon, J.M., Caminero, M.A., Garcia-Plaza, E., Nunez, P.J., “Additive manufacturing of PLA structures using fused deposition modelling: Effect of process parameters on mechanical properties and their optimal selection”, Materials Design, Vol. 124, Pages 143-157, 2017.
  • 18. Solmaz, M.Y., Çelik, E., “3 Boyutlu yazıcı kullanılarak üretilen bal peteği sandviç kompozitlerin basma yükü altındaki performanslarının araştırılması” [Investigation of compression test performances of honeycomb sandwich composites produced by 3d printing method], Fırat University Journal of Engineering Sciences, Vol. 30, Issue 1, Pages 277-286, 2018.
  • 19. Ozgul, H.G., Tatli, O., “3D Printer Design, Manufacturing and Effect of Infill Patterns on Mechanical Properties”, Icontech International Journal, Vol. 4, Issue 1, Pages 13-24, 2020.
  • 20. Gupta, P., Kumari, S., Gupta, A., Sinha, A.K., Jindal, P., “Effect of heat treatment on mechanical properties of 3D printed polylactic acid parts” Materials Testing, Vol. 63, Issue 1, Pages 73-78, 2021.
  • 21. Torun, A.R., Dike, A.S., Yildiz, E.C., Saglam, İ., Choupani, N., “Fracture characterization and modeling of Gyroid filled 3D printed PLA structures”, Materials Testing, Vol. 63, Issue 5, Pages 397-401, 2021.
  • 22. Ning, F., Cong, W., Hu, Y., Wang, H. J., “Additive manufacturing of carbon fiber-reinforced plastic composites using fused deposition modeling: Effects of process parameters on tensile properties”, Journal of Composite Materials, Vol. 51, Issue 4, Pages 451-462, 2017.
  • 23. Kumar, R., Singh, R., Ahuja, I., “Friction stir welding of ABS-15Al sheets by introducing compatible semi-consumable shoulder-less pin of PA6-50Al”, Measurement, Vol. 131, Pages 461-472, 2019.
  • 24. Roj, R., Nurnberg, J., Theiss, R., Dultgen, P., “Comparison of FDM-printed and compression molded tensile samples”, Materials Testing, Vol. 62, Issue 10, Pages 985-992, 2020.
  • 25. Uzun, M., Erdoğdu, Y., “Eriyik yığma modellemesi ile üretimde takviyesiz ve takviyeli PLA kullanımının mekanik özelliklere etkisinin araştırılması” [Investigation of the effect of using unreinforced and reinforced PLA in production by fused deposition modeling on mechanical properties], Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, Vol. 10, Issue 4, Pages 2800-2808, 2020.
  • 26. Ando, M., Birosz, M., Jeganmohan, S., “Surface bonding of additive manufactured parts from multi-colored PLA materials”, Measurement, Vol. 169, Issue 108583, Pages 1-7, 2021.
  • 27. Ultimaker, “The Ultimaker 2 Go specifications”, https://support.ultimaker.com/hc/enus/articles/360011935299-The-Ultimaker-2-Go-specifications, February 06, 2021.
  • 28. Ultimaker, “The Ultimaker 2 Go user manual”, https://support.ultimaker.com/hc/enus/articles/360011813180-The-Ultimaker-2-Go-user-manual, February 06, 2021.
  • 29. Ultimaker, “The Ultimaker 2 Extended specifications”,https://support.ultimaker.com/hc/en-us/articles/360011987939-The-Ultimaker-2-Extended-specifications, February 06, 2021.
  • 30. Ultimaker, “The Ultimaker 2 Extended user manual”, https://support.ultimaker.com/hc/en-us/articles/360011987819-The-Ultimaker-2-Extended-user-manual, February 06, 2021.
  • 31. Standard ASTM D638-14, “Standard Test Method for Tensile Properties of Plastics”, 2014.
  • 32. Ultimaker, “Ultimaker PLA SDS”, https://support.ultimaker.com/hc/en-us/articles/360012759359-Ultimaker-PLA-SDS, February 06, 2021.
  • 33. Ultimaker, “Ultimaker PLA TDS”, https://support.ultimaker.com/hc/en-us/articles/360011962720-Ultimaker-PLA-TDS, February 06, 2021.
  • 34. Tao, Y., Li, P., Pan, L., “Improving tensile properties of polylactic acid parts by adjusting printing parameters of open source 3D printers”, Material Science, Vol. 26, Issue 1, Pages 83-87, 2020.
  • 35. Aydın, M., Yıldırım, F., Çantı, E., “Farklı yazdırma parametrelerinde PLA filamentin işlem performansının incelenmesi” [Investigation of the processing performance of PLA filament in different printing parameters], International Journal of 3D Printing Technologies and Digital Industry, Vol. 3, Issue 2, Pages 102-115, 2019.
  • 36. Gunay, M., “Modeling of Tensile and Bending Strength for PLA Parts Produced by FDM”, International Journal of 3D Printing Technologies and Digital Industry, Vol. 3, Issue 3, Pages 204-211, 2019.
Year 2022, Volume: 6 Issue: 3, 438 - 448, 31.12.2022
https://doi.org/10.46519/ij3dptdi.1088805

Abstract

Project Number

FDK-2020-2351

References

  • 1. Ngo, T.D., Kashani, A., Imbalzano, G., Nguyen, K.T.Q., Hui, D., “Additive manufacturing (3D printing): A review of materials, methods, applications and challenges”, Composite Part B: Engineering, Vol. 143, Pages 172-196, 2018.
  • 2. Popescu, D., Zapciu, A., Amza, C., Baciu, F., Marinescu, R., “FDM process parameters influence over the mechanical properties of polymer specimens: A review”, Polymer Testing, Vol. 69, Pages 157-166, 2018.
  • 3. Yaman, U., Butt, N., Sacks, E., Hoffmann C., “Slice coherence in a query-based architecture for 3D heterogeneous printing”, Computer-Aided Design, Vol. 75-76, Pages 27-38, 2016.
  • 4. Beran, T., Mulholland, T., Henning, F., Rudolph, N., Osswald, T.A., “Nozzle clogging factors during fused filament fabrication of spherical particle filled polymers”, Additive Manufacturing, Vol. 23, Pages 206-214, 2018.
  • 5. Osswald, T.A., Puentes, J., Kattinger, J., “Fused filament fabrication melting model”, Additive Manufacturing, Vol. 22, Pages 51-59, 2018.
  • 6. Yaman, U., “Shrinkage compensation of holes via shrinkage of interior structure in FDM process”, The International Journal of Advanced Manufacturing Technology, Vol. 94, Pages 2187-2197, 2018.
  • 7. Dilberoglu, U.M., Simsek, S., Yaman, U., “Shrinkage compensation approach proposed for ABS material in FDM process”, Materials and Manufacturing Processes, Vol. 34, Pages 993-998, 2019.
  • 8. Mazzei Capote, G.A., Rudolph, N.M., Osswald, P.V., Osswald, T.A., “Failure surface development for ABS fused filament fabrication parts” Additive Manufacturing, Vol. 28, Pages 169-175, 2019.
  • 9. Graziosi, S., Cannazza, F., Vedani, M., Ratti, A., Tamburrino, F., Bordegoni, M., “Design and testing of an innovative 3D-printed metal-composite junction” Additive Manufacturing, Vol. 36, Issue 101311, Pages 1-18, 2020.
  • 10. Kamer, M.S., Doğan, O., Temiz, Ş., Yaykaşlı, H., “3 Boyutlu yazıcı ile farklı yazdırma parametreleri kullanılarak üretilen eğme test numunelerinin mekanik özelliklerinin incelenmesi” [Investigation of the mechanical properties of flexural test samples produced using different printing parameters with a 3D printer], Cukurova University Journal of the Faculty of Engineering, Vol. 36, Issue 3, Pages 835-846, 2021.
  • 11. Kamer, M.S., Temiz, Ş., “3 Boyutlu yazıcıda ABS ve PLA filamentler ile farklı tabla ve nozul sıcaklıkları kullanılarak üretilen çekme test numunelerinin mekanik özelliklerinin araştırılması” [Investigation of the mechanical properties of tensile test samples produced with a 3D printer using different bed and nozzle temperatures with ABS and PLA filaments], Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, Vol. 24, Issue 4, Pages 341-358, 2021.
  • 12. Kamer, M.S., Temiz, Ş., Yaykaşlı, H., Kaya, A., “3 Boyutlu yazıcı ile farklı renklerde ve farklı dolgu desenlerinde üretilen çekme test numunelerinin mekanik özelliklerinin incelenmesi” [Investigation of the mechanical properties of tensile test samples produced in different colors and different infill patterns with a 3D printer], Uludag University Journal of the Faculty of Engineering, Vol. 26, Issue 3, Pages 829-848, 2021.
  • 13. Karabeyoglu, S.S., Eksi, O., Yaman, P., Kucukyildirim, B.O., “Effects of infill pattern and density on wear performance of FDM-printed acrylonitrile-butadiene-styrene parts”, Journal of Polymer Engineering, Vol. 41, Issue 10, Pages 854-862, 2021.
  • 14. Tognana, S., Montecinos, S., Gastien, R. Salgueiro, W., “Influence of fabrication parameters on the elastic modulus and characteristic stresses in 3D printed PLA samples produced via fused deposition modelling technique”, Journal of Polymer Engineering, Vol. 41, Issue 6, Pages 490-498, 2021.
  • 15. Dobos, J., Hanon, M.M., Oldal, I., “Effect of infill density and pattern on the specific load capacity of FDM 3D-printed PLA multi-layer sandwich”, Journal of Polymer Engineering, Vol. 42, Issue 2, Pages 118-128, 2022.
  • 16. Sood, A.K., Ohdar, R.K., Mahapatra, S.S., “Parametric appraisal of mechanical property of fused deposition modelling processed parts” Materials Design, Vol. 31, Issue 1, Pages 287-295, 2010.
  • 17. Chacon, J.M., Caminero, M.A., Garcia-Plaza, E., Nunez, P.J., “Additive manufacturing of PLA structures using fused deposition modelling: Effect of process parameters on mechanical properties and their optimal selection”, Materials Design, Vol. 124, Pages 143-157, 2017.
  • 18. Solmaz, M.Y., Çelik, E., “3 Boyutlu yazıcı kullanılarak üretilen bal peteği sandviç kompozitlerin basma yükü altındaki performanslarının araştırılması” [Investigation of compression test performances of honeycomb sandwich composites produced by 3d printing method], Fırat University Journal of Engineering Sciences, Vol. 30, Issue 1, Pages 277-286, 2018.
  • 19. Ozgul, H.G., Tatli, O., “3D Printer Design, Manufacturing and Effect of Infill Patterns on Mechanical Properties”, Icontech International Journal, Vol. 4, Issue 1, Pages 13-24, 2020.
  • 20. Gupta, P., Kumari, S., Gupta, A., Sinha, A.K., Jindal, P., “Effect of heat treatment on mechanical properties of 3D printed polylactic acid parts” Materials Testing, Vol. 63, Issue 1, Pages 73-78, 2021.
  • 21. Torun, A.R., Dike, A.S., Yildiz, E.C., Saglam, İ., Choupani, N., “Fracture characterization and modeling of Gyroid filled 3D printed PLA structures”, Materials Testing, Vol. 63, Issue 5, Pages 397-401, 2021.
  • 22. Ning, F., Cong, W., Hu, Y., Wang, H. J., “Additive manufacturing of carbon fiber-reinforced plastic composites using fused deposition modeling: Effects of process parameters on tensile properties”, Journal of Composite Materials, Vol. 51, Issue 4, Pages 451-462, 2017.
  • 23. Kumar, R., Singh, R., Ahuja, I., “Friction stir welding of ABS-15Al sheets by introducing compatible semi-consumable shoulder-less pin of PA6-50Al”, Measurement, Vol. 131, Pages 461-472, 2019.
  • 24. Roj, R., Nurnberg, J., Theiss, R., Dultgen, P., “Comparison of FDM-printed and compression molded tensile samples”, Materials Testing, Vol. 62, Issue 10, Pages 985-992, 2020.
  • 25. Uzun, M., Erdoğdu, Y., “Eriyik yığma modellemesi ile üretimde takviyesiz ve takviyeli PLA kullanımının mekanik özelliklere etkisinin araştırılması” [Investigation of the effect of using unreinforced and reinforced PLA in production by fused deposition modeling on mechanical properties], Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, Vol. 10, Issue 4, Pages 2800-2808, 2020.
  • 26. Ando, M., Birosz, M., Jeganmohan, S., “Surface bonding of additive manufactured parts from multi-colored PLA materials”, Measurement, Vol. 169, Issue 108583, Pages 1-7, 2021.
  • 27. Ultimaker, “The Ultimaker 2 Go specifications”, https://support.ultimaker.com/hc/enus/articles/360011935299-The-Ultimaker-2-Go-specifications, February 06, 2021.
  • 28. Ultimaker, “The Ultimaker 2 Go user manual”, https://support.ultimaker.com/hc/enus/articles/360011813180-The-Ultimaker-2-Go-user-manual, February 06, 2021.
  • 29. Ultimaker, “The Ultimaker 2 Extended specifications”,https://support.ultimaker.com/hc/en-us/articles/360011987939-The-Ultimaker-2-Extended-specifications, February 06, 2021.
  • 30. Ultimaker, “The Ultimaker 2 Extended user manual”, https://support.ultimaker.com/hc/en-us/articles/360011987819-The-Ultimaker-2-Extended-user-manual, February 06, 2021.
  • 31. Standard ASTM D638-14, “Standard Test Method for Tensile Properties of Plastics”, 2014.
  • 32. Ultimaker, “Ultimaker PLA SDS”, https://support.ultimaker.com/hc/en-us/articles/360012759359-Ultimaker-PLA-SDS, February 06, 2021.
  • 33. Ultimaker, “Ultimaker PLA TDS”, https://support.ultimaker.com/hc/en-us/articles/360011962720-Ultimaker-PLA-TDS, February 06, 2021.
  • 34. Tao, Y., Li, P., Pan, L., “Improving tensile properties of polylactic acid parts by adjusting printing parameters of open source 3D printers”, Material Science, Vol. 26, Issue 1, Pages 83-87, 2020.
  • 35. Aydın, M., Yıldırım, F., Çantı, E., “Farklı yazdırma parametrelerinde PLA filamentin işlem performansının incelenmesi” [Investigation of the processing performance of PLA filament in different printing parameters], International Journal of 3D Printing Technologies and Digital Industry, Vol. 3, Issue 2, Pages 102-115, 2019.
  • 36. Gunay, M., “Modeling of Tensile and Bending Strength for PLA Parts Produced by FDM”, International Journal of 3D Printing Technologies and Digital Industry, Vol. 3, Issue 3, Pages 204-211, 2019.
There are 36 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Research Article
Authors

Muhammed Safa Kamer 0000-0003-3852-1031

Şemsettin Temiz 0000-0002-6737-3720

Hakan Yaykaşlı 0000-0001-5729-9662

Ahmet Kaya 0000-0001-9197-3542

Orhan Akay 0000-0002-2369-1399

Project Number FDK-2020-2351
Early Pub Date October 14, 2022
Publication Date December 31, 2022
Submission Date March 16, 2022
Published in Issue Year 2022 Volume: 6 Issue: 3

Cite

APA Kamer, M. S., Temiz, Ş., Yaykaşlı, H., Kaya, A., et al. (2022). EFFECT OF PRINTING SPEED ON FDM 3D-PRINTED PLA SAMPLES PRODUCED USING DIFFERENT TWO PRINTERS. International Journal of 3D Printing Technologies and Digital Industry, 6(3), 438-448. https://doi.org/10.46519/ij3dptdi.1088805
AMA Kamer MS, Temiz Ş, Yaykaşlı H, Kaya A, Akay O. EFFECT OF PRINTING SPEED ON FDM 3D-PRINTED PLA SAMPLES PRODUCED USING DIFFERENT TWO PRINTERS. IJ3DPTDI. December 2022;6(3):438-448. doi:10.46519/ij3dptdi.1088805
Chicago Kamer, Muhammed Safa, Şemsettin Temiz, Hakan Yaykaşlı, Ahmet Kaya, and Orhan Akay. “EFFECT OF PRINTING SPEED ON FDM 3D-PRINTED PLA SAMPLES PRODUCED USING DIFFERENT TWO PRINTERS”. International Journal of 3D Printing Technologies and Digital Industry 6, no. 3 (December 2022): 438-48. https://doi.org/10.46519/ij3dptdi.1088805.
EndNote Kamer MS, Temiz Ş, Yaykaşlı H, Kaya A, Akay O (December 1, 2022) EFFECT OF PRINTING SPEED ON FDM 3D-PRINTED PLA SAMPLES PRODUCED USING DIFFERENT TWO PRINTERS. International Journal of 3D Printing Technologies and Digital Industry 6 3 438–448.
IEEE M. S. Kamer, Ş. Temiz, H. Yaykaşlı, A. Kaya, and O. Akay, “EFFECT OF PRINTING SPEED ON FDM 3D-PRINTED PLA SAMPLES PRODUCED USING DIFFERENT TWO PRINTERS”, IJ3DPTDI, vol. 6, no. 3, pp. 438–448, 2022, doi: 10.46519/ij3dptdi.1088805.
ISNAD Kamer, Muhammed Safa et al. “EFFECT OF PRINTING SPEED ON FDM 3D-PRINTED PLA SAMPLES PRODUCED USING DIFFERENT TWO PRINTERS”. International Journal of 3D Printing Technologies and Digital Industry 6/3 (December 2022), 438-448. https://doi.org/10.46519/ij3dptdi.1088805.
JAMA Kamer MS, Temiz Ş, Yaykaşlı H, Kaya A, Akay O. EFFECT OF PRINTING SPEED ON FDM 3D-PRINTED PLA SAMPLES PRODUCED USING DIFFERENT TWO PRINTERS. IJ3DPTDI. 2022;6:438–448.
MLA Kamer, Muhammed Safa et al. “EFFECT OF PRINTING SPEED ON FDM 3D-PRINTED PLA SAMPLES PRODUCED USING DIFFERENT TWO PRINTERS”. International Journal of 3D Printing Technologies and Digital Industry, vol. 6, no. 3, 2022, pp. 438-4, doi:10.46519/ij3dptdi.1088805.
Vancouver Kamer MS, Temiz Ş, Yaykaşlı H, Kaya A, Akay O. EFFECT OF PRINTING SPEED ON FDM 3D-PRINTED PLA SAMPLES PRODUCED USING DIFFERENT TWO PRINTERS. IJ3DPTDI. 2022;6(3):438-4.

Cited By








download

International Journal of 3D Printing Technologies and Digital Industry is lisenced under Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı