Research Article
BibTex RIS Cite

ALTIGEN BİRİM HÜCRELİ STENT TASARIMININ PERFORMANS ANALİZLERİ VE FDM İLE TEK KATMANLI ÜRETİLEBİLİRLİK ÇALIŞMASI

Year 2022, Volume: 6 Issue: 3, 347 - 357, 31.12.2022
https://doi.org/10.46519/ij3dptdi.1134055

Abstract

İlaç salınımlı stentlerden sonra geliştirilen biyobozunur polimer esaslı stentler için yapılan ön klinik çalışmalardan elde edilen sonuçlara göre polimer stentlerin kullanılabilirliği sorgulanmaktadır. Polimer stentlerde strat kalınlığının yüksek olması ve mekanik özelliklerin zayıflığı nedeniyle tasarım ve malzeme iyileştirmesine gidilerek yeni modellerin ortaya çıkarılması üzerine araştırmalara devam edilmektedir. Balonla genişleyen stentlerde oluşan uç açılması arter içerisinde intimal ve medial katmanlara zarar vermektedir. Bu zarar, erken dönemde neointimal hiperplazi ve restenoza sebep olmaktadır. Metalik stent geometrilerinden biri olan Palmaz-Schatz birim hücre modelinde balonla genişleme esnasında uç açılması ve kısalma oranı meydana gelmektedir. Bu çalışmada, Palmaz-Schatz stent geometrisinin genişlemesiyle oluşturduğu geometri dikkate alınarak PLLA malzemeden altıgen birim stent geometrisinde yeni tasarım gerçekleştirilmiştir. Sonlu elemanlar simülasyonuyla, ince strat kalınlığında tasarlanan altıgen stendin genişlemesinde oluşan uç açılması ve kısalma oranı belirlenmiştir. Ayrıca, stent genişlemesinde üç katmanlı arter ve kalsifik plak yapısında meydana gelen doku hasarı ölçülmüştür. Altıgen geometrideki stentte oluşan uç açılması ve kısalma oranı Palmaz-Schatz modeline göre azaltılmıştır. Bununla birlikte, PLA/PHA karışımı malzemeden eriyik yığma modelleme ile altıgen stent geometrisinin 3B plaka baskısı tek katmanlı olarak üretilmesi sonrası ısıtıcı bir tubular tabla üzerinde sarılarak stent formuna getirilmiştir

References

  • 1. Çınar, C., Oran, İ., “Temel Anjioplasti: Balon/Stentler ve Özellikleri”, Türk Radyoloji Seminerleri, Cilt. 3, Sayfa 255-262, 2015.
  • 2. Bilge M., “Operasyonlar”, http://www.profdrmehmetbilge.com/koroner-stent/ ,18.09.2019.
  • 3. İyibilgin, O., Fındık, F., “Metalik Biyo-Uyumlu Stentlerin Gelişim Süreci”, Düzce Üniversitesi Bilim ve Teknoloji Dergisi, Cilt. 6, Sayfa 28-348, 2018.
  • 4. Kočka, V., Toušek, P., Kozel, M., Buono, A., Hajšl, M., Lisa, L., Widimský, P., “Bioresorbable scaffold implantation in STEMI patients: 5 years imaging subanalysis of PRAGUE-19 study”, Journal of Translational Medicine, Vol. 18, Issue 1, Pages 1-9, 2020.
  • 5. Jinnouchi, H., Torii, S., Sakamoto, A., Kolodgie, F.D., Virmani, R., Finn, A.V., “Fully bioresorbable vascular scaffolds: lessons learned and future directions”, Nature Reviews Cardiology, Vol. 16 Issue 5, Pages 286-304, 2019. 6. Wei, L., Leo, H. L., Chen, Q., Li, Z. “Structural and hemodynamic analyses of different stent structures in curved and stenotic coronary artery”, Frontiers in bioengineering and biotechnology, Vol. 7, Page 366, 2019.
  • 7. Wang, Q., Fang, G., Zhao, Y., Wang, G., Cai, T., “Computational and experimental investigation into mechanical performances of Poly-L-Lactide Acid (PLLA) coronary stents”, Journal of the mechanical behavior of biomedical materials, Vol. 65, Pages 415-427, 2017.
  • 8. Chen, C., Xiong, Y., Jiang, W., Wang, Y., Wang, Z., Chen, Y., “Experimental and numerical simulation of biodegradable stents with different strut geometries”, Cardiovascular engineering and technology, Vol. 11, Issue 1, Pages 36-46, 2020.
  • 9. Liu, R., Xu, S., Luo, X., Liu, Z. “Theoretical and numerical analysis of mechanical behaviors of a metamaterial-based shape memory polymer stent”, Polymers, Vol. 12, Issue 8, Pages 1784, 2020.
  • 10. Prithipaul, P. K., Kokkolaras, M., Pasini, D., “Assessment of structural and hemodynamic performance of vascular stents modelled as periodic lattices”, Medical Engineering & Physics, Vol. 57, Pages 11-18, 2018.
  • 11. Noad, R. L., Hanratty, C. G., Walsh, S. J., “Clinical impact of stent design”, Interventional Cardiology Review, Vol. 9, Issue 2, Pages 89, 2014.
  • 12. Sousa, A. M., Amaro, A. M., Piedade, A. P., “3D Printing of Polymeric Bioresorbable Stents: A Strategy to Improve Both Cellular Compatibility and Mechanical Properties”, Polymers, Vol. 14, Issue 6, Pages 1099, 2022.
  • 13. Toong, D. W. Y., Toh, H. W., Ng, J. C. K., Wong, P. E. H., Leo, H. L., Venkatraman, S., Huang, Y., “Bioresorbable polymeric scaffold in cardiovascular applications. International Journal of Molecular Sciences”, Vol. 21, Issue 10, Pages 3444, 2020.
  • 14. Guerra, A., Roca, A., Ciurana, J., “A novel 3D additive manufacturing machine to biodegradable stents”, Procedia Manufacturing, Vol. 13, Pages 718-723, 2017.
  • 15. Jia, H., Gu, S. Y., Chang, K., “3D printed self‐expandable vascular stents from biodegradable shape memory polymer”, Advances in Polymer Technology, Vol. 37, Issue 8, Pages 3222-3228, 2018.
  • 16. Rydz, J., Włodarczyk, J., Gonzalez Ausejo, J., Musioł, M., Sikorska, W., Sobota, M., Janeczek, H., “Three-dimensional printed PLA and PLA/PHA dumbbell-shaped specimens: material defects and their impact on degradation behavior”, Materials, Vol. 13, Issue 8, 2005, 2020.
  • 17. Guessasma, S., Belhabib, S., Nouri, H., “Thermal cycling, microstructure and tensile performance of PLA-PHA polymer printed using fused deposition modelling technique”, Rapid Prototyping Journal, Vol. 26, Issue 1, Pages 122–133, 2020.
  • 18. Ribeiro, N. S., Folgado, J., Rodrigues, H. C., “Surrogate‐based visualization and sensitivity analysis of coronary stent performance: A study on the influence of geometric design”, International journal for numerical methods in biomedical engineering, Vol. 34, Issue 10, Pages e3125, 2018.
  • 19. Pant, S., Bressloff, N. W., Limbert, G., “Geometry parameterization and multidisciplinary constrained optimization of coronary stents”, Biomechanics and modeling in mechanobiology, Vol. 11, Issue 1, Pages 61-82, 2012.
  • 20. Schiavone, A., and Zhao, L.G., “A study of balloon type, system constraint and artery constitutive model used in finite element simulation of stent deployment”, Mechanics of advanced materials and modern processes, Vol. 1, Issue 1, Pages 1-15, 2015.
  • 21. Gürmen, T., Babalık, E., Gülbaran, M., Öztürk, S., Öztürk, M., “İntrakoroner Stent İmplantasyonu: Altı Aylık Sonuçlar, Stent Restenozuna Etki Eden Faktörler”, TÜRK KARDİYOLOJİ DERNEĞİ ARŞİVİ, Vol. 26, Issue 7, Pages 408-415, 1998.
  • 22. Schiavone, A., Abunassar, C., Hossainy, S., Zhao, L.G. “Computational analysis of mechanical stress–strain interaction of a bioresorbable scaffold with blood vessel”, Journal of biomechanics, Vol. 49, Issue 13, Pages 2677-2683, 2016.
  • 23. Song, K., Bi, Y., Zhao, H., Wu, T., Xu, F., Zhao, G., “Structural optimization and finite element analysis of poly‐l‐lactide acid coronary stent with improved radial strength and acute recoil rate”, Journal of Biomedical Materials Research Part B: Applied Biomaterials, Vol. 108, Issue 7, Pages 2754-2764, 2020.
  • 24. Ju, F., Xia, Z., Sasaki, K., “On the finite element modelling of balloon-expandable stents”, Journal of the Mechanical Behavior of Biomedical Materials, Vol. 1, Issue 1, Pages 86-95, 2008.
  • 25. Qiu, T.Y., Song, M., Zhao, L.G. “A computational study of crimping and expansion of bioresorbable polymeric stents”, Mechanics of time-dependent materials, Vol. 22, Issue 2, Pages 273-290, 2018.
  • 26. Chen, C., Xiong, Y., Jiang, W., Wang, Y., Wang, Z., Chen, Y. “Experimental and numerical simulation of biodegradable stents with different strut geometries”, Cardiovascular engineering and technology, Vol. 11, Issue 1, Pages 36-46, 2020.
  • 27. Holzapfel, G. A., Stadler, M., Gasser, T. C. “Changes in the mechanical environment of stenotic arteries during interaction with stents: computational assessment of parametric stent designs”, J. Biomech. Eng., Vol. 127, Issue 1, Pages 166-180, 2005.
  • 28. Ding, H., Zhang, Y., Liu, Y., Shi, C., Nie, Z., Liu, H., Gu, Y. “Analysis of Vascular Mechanical Characteristics after Coronary Degradable Stent Implantation”, BioMed research international, Vol. 2019.
  • 29. Qiu, T.Y., Zhao, L.G., ve Song, M., “A computational study of mechanical performance of bioresorbable polymeric stents with design variations”, Cardiovascular engineering and technology, Vol. 10, Issue 1, Pages 46-60, 2019.
  • 30. He, R., Zhao, L.G., Silberschmidt, V.V., Liu, Y., Vogt, F., “Finite element evaluation of artery damage in deployment of polymeric stent with pre-and post-dilation”, Biomechanics and modeling in mechanobiology, Vol 19, Issue 1, Pages 47-60, 2020.
  • 31. Ekinci, A., Johnson, A. A., Gleadall, A., Engstrøm, D. S., Han, X., “Layer-dependent properties of material extruded biodegradable polylactic acid”, Journal of the Mechanical Behavior of Biomedical Materials, Vol. 104, Pages 103654, 2020.
  • 32. Ausejo, J. G., Rydz, J., Musioł, M., Sikorska, W., Sobota, M., Włodarczyk, J., Kowalczuk, M., “A comparative study of three-dimensional printing directions: The degradation and toxicological profile of a PLA/PHA blend”, Polymer degradation and stability, Vol. 152, Pages 191-207, 2018.

PERFORMANCE ANALYSIS OF HEXAGONAL UNIT CELL STENT DESIGN AND SINGLE-LAYERED MANUFACTURABILITY WITH FDM

Year 2022, Volume: 6 Issue: 3, 347 - 357, 31.12.2022
https://doi.org/10.46519/ij3dptdi.1134055

Abstract

The usability of polymer stents is questioned according to the results obtained from preliminary clinical studies for biodegradable polymer-based stents developed after drug-eluting stents. Due to the high strut thickness and weak mechanical properties of polymer stents, research continues on the creation of new models by improving the design and material. The dog-boning in balloon-expanded stents damages the intimal and medial layers within the artery. This damage causes neointimal hyperplasia and restenosis in the early period. During the balloon expansion of the Palmaz-Schatz unit cell model, which is one of the metallic stent geometries, dog-boning and foreshortening rates occur. In this study, a new design was carried out in hexagonal unit stent geometry from PLLA material, taking into account the geometry formed by the expansion of the Palmaz-Schatz stent geometry. The dog-boning and foreshortening ratio of the hexagonal stent designed in thin strut thickness was determined by finite element simulation. In addition, vessel injury in the three-layered artery and calcified plaque structure was measured during stent expansion. The dog-boning and foreshortening ratio of the stent with hexagonal geometry is reduced compared to the Palmaz-Schatz model. However, after the 3D printing of the hexagonal stent geometry was produced as a single layer by fused deposition modeling from PLA/PHA blends, it was wrapped on a heating tubular table and brought into the stent form.

References

  • 1. Çınar, C., Oran, İ., “Temel Anjioplasti: Balon/Stentler ve Özellikleri”, Türk Radyoloji Seminerleri, Cilt. 3, Sayfa 255-262, 2015.
  • 2. Bilge M., “Operasyonlar”, http://www.profdrmehmetbilge.com/koroner-stent/ ,18.09.2019.
  • 3. İyibilgin, O., Fındık, F., “Metalik Biyo-Uyumlu Stentlerin Gelişim Süreci”, Düzce Üniversitesi Bilim ve Teknoloji Dergisi, Cilt. 6, Sayfa 28-348, 2018.
  • 4. Kočka, V., Toušek, P., Kozel, M., Buono, A., Hajšl, M., Lisa, L., Widimský, P., “Bioresorbable scaffold implantation in STEMI patients: 5 years imaging subanalysis of PRAGUE-19 study”, Journal of Translational Medicine, Vol. 18, Issue 1, Pages 1-9, 2020.
  • 5. Jinnouchi, H., Torii, S., Sakamoto, A., Kolodgie, F.D., Virmani, R., Finn, A.V., “Fully bioresorbable vascular scaffolds: lessons learned and future directions”, Nature Reviews Cardiology, Vol. 16 Issue 5, Pages 286-304, 2019. 6. Wei, L., Leo, H. L., Chen, Q., Li, Z. “Structural and hemodynamic analyses of different stent structures in curved and stenotic coronary artery”, Frontiers in bioengineering and biotechnology, Vol. 7, Page 366, 2019.
  • 7. Wang, Q., Fang, G., Zhao, Y., Wang, G., Cai, T., “Computational and experimental investigation into mechanical performances of Poly-L-Lactide Acid (PLLA) coronary stents”, Journal of the mechanical behavior of biomedical materials, Vol. 65, Pages 415-427, 2017.
  • 8. Chen, C., Xiong, Y., Jiang, W., Wang, Y., Wang, Z., Chen, Y., “Experimental and numerical simulation of biodegradable stents with different strut geometries”, Cardiovascular engineering and technology, Vol. 11, Issue 1, Pages 36-46, 2020.
  • 9. Liu, R., Xu, S., Luo, X., Liu, Z. “Theoretical and numerical analysis of mechanical behaviors of a metamaterial-based shape memory polymer stent”, Polymers, Vol. 12, Issue 8, Pages 1784, 2020.
  • 10. Prithipaul, P. K., Kokkolaras, M., Pasini, D., “Assessment of structural and hemodynamic performance of vascular stents modelled as periodic lattices”, Medical Engineering & Physics, Vol. 57, Pages 11-18, 2018.
  • 11. Noad, R. L., Hanratty, C. G., Walsh, S. J., “Clinical impact of stent design”, Interventional Cardiology Review, Vol. 9, Issue 2, Pages 89, 2014.
  • 12. Sousa, A. M., Amaro, A. M., Piedade, A. P., “3D Printing of Polymeric Bioresorbable Stents: A Strategy to Improve Both Cellular Compatibility and Mechanical Properties”, Polymers, Vol. 14, Issue 6, Pages 1099, 2022.
  • 13. Toong, D. W. Y., Toh, H. W., Ng, J. C. K., Wong, P. E. H., Leo, H. L., Venkatraman, S., Huang, Y., “Bioresorbable polymeric scaffold in cardiovascular applications. International Journal of Molecular Sciences”, Vol. 21, Issue 10, Pages 3444, 2020.
  • 14. Guerra, A., Roca, A., Ciurana, J., “A novel 3D additive manufacturing machine to biodegradable stents”, Procedia Manufacturing, Vol. 13, Pages 718-723, 2017.
  • 15. Jia, H., Gu, S. Y., Chang, K., “3D printed self‐expandable vascular stents from biodegradable shape memory polymer”, Advances in Polymer Technology, Vol. 37, Issue 8, Pages 3222-3228, 2018.
  • 16. Rydz, J., Włodarczyk, J., Gonzalez Ausejo, J., Musioł, M., Sikorska, W., Sobota, M., Janeczek, H., “Three-dimensional printed PLA and PLA/PHA dumbbell-shaped specimens: material defects and their impact on degradation behavior”, Materials, Vol. 13, Issue 8, 2005, 2020.
  • 17. Guessasma, S., Belhabib, S., Nouri, H., “Thermal cycling, microstructure and tensile performance of PLA-PHA polymer printed using fused deposition modelling technique”, Rapid Prototyping Journal, Vol. 26, Issue 1, Pages 122–133, 2020.
  • 18. Ribeiro, N. S., Folgado, J., Rodrigues, H. C., “Surrogate‐based visualization and sensitivity analysis of coronary stent performance: A study on the influence of geometric design”, International journal for numerical methods in biomedical engineering, Vol. 34, Issue 10, Pages e3125, 2018.
  • 19. Pant, S., Bressloff, N. W., Limbert, G., “Geometry parameterization and multidisciplinary constrained optimization of coronary stents”, Biomechanics and modeling in mechanobiology, Vol. 11, Issue 1, Pages 61-82, 2012.
  • 20. Schiavone, A., and Zhao, L.G., “A study of balloon type, system constraint and artery constitutive model used in finite element simulation of stent deployment”, Mechanics of advanced materials and modern processes, Vol. 1, Issue 1, Pages 1-15, 2015.
  • 21. Gürmen, T., Babalık, E., Gülbaran, M., Öztürk, S., Öztürk, M., “İntrakoroner Stent İmplantasyonu: Altı Aylık Sonuçlar, Stent Restenozuna Etki Eden Faktörler”, TÜRK KARDİYOLOJİ DERNEĞİ ARŞİVİ, Vol. 26, Issue 7, Pages 408-415, 1998.
  • 22. Schiavone, A., Abunassar, C., Hossainy, S., Zhao, L.G. “Computational analysis of mechanical stress–strain interaction of a bioresorbable scaffold with blood vessel”, Journal of biomechanics, Vol. 49, Issue 13, Pages 2677-2683, 2016.
  • 23. Song, K., Bi, Y., Zhao, H., Wu, T., Xu, F., Zhao, G., “Structural optimization and finite element analysis of poly‐l‐lactide acid coronary stent with improved radial strength and acute recoil rate”, Journal of Biomedical Materials Research Part B: Applied Biomaterials, Vol. 108, Issue 7, Pages 2754-2764, 2020.
  • 24. Ju, F., Xia, Z., Sasaki, K., “On the finite element modelling of balloon-expandable stents”, Journal of the Mechanical Behavior of Biomedical Materials, Vol. 1, Issue 1, Pages 86-95, 2008.
  • 25. Qiu, T.Y., Song, M., Zhao, L.G. “A computational study of crimping and expansion of bioresorbable polymeric stents”, Mechanics of time-dependent materials, Vol. 22, Issue 2, Pages 273-290, 2018.
  • 26. Chen, C., Xiong, Y., Jiang, W., Wang, Y., Wang, Z., Chen, Y. “Experimental and numerical simulation of biodegradable stents with different strut geometries”, Cardiovascular engineering and technology, Vol. 11, Issue 1, Pages 36-46, 2020.
  • 27. Holzapfel, G. A., Stadler, M., Gasser, T. C. “Changes in the mechanical environment of stenotic arteries during interaction with stents: computational assessment of parametric stent designs”, J. Biomech. Eng., Vol. 127, Issue 1, Pages 166-180, 2005.
  • 28. Ding, H., Zhang, Y., Liu, Y., Shi, C., Nie, Z., Liu, H., Gu, Y. “Analysis of Vascular Mechanical Characteristics after Coronary Degradable Stent Implantation”, BioMed research international, Vol. 2019.
  • 29. Qiu, T.Y., Zhao, L.G., ve Song, M., “A computational study of mechanical performance of bioresorbable polymeric stents with design variations”, Cardiovascular engineering and technology, Vol. 10, Issue 1, Pages 46-60, 2019.
  • 30. He, R., Zhao, L.G., Silberschmidt, V.V., Liu, Y., Vogt, F., “Finite element evaluation of artery damage in deployment of polymeric stent with pre-and post-dilation”, Biomechanics and modeling in mechanobiology, Vol 19, Issue 1, Pages 47-60, 2020.
  • 31. Ekinci, A., Johnson, A. A., Gleadall, A., Engstrøm, D. S., Han, X., “Layer-dependent properties of material extruded biodegradable polylactic acid”, Journal of the Mechanical Behavior of Biomedical Materials, Vol. 104, Pages 103654, 2020.
  • 32. Ausejo, J. G., Rydz, J., Musioł, M., Sikorska, W., Sobota, M., Włodarczyk, J., Kowalczuk, M., “A comparative study of three-dimensional printing directions: The degradation and toxicological profile of a PLA/PHA blend”, Polymer degradation and stability, Vol. 152, Pages 191-207, 2018.
There are 31 citations in total.

Details

Primary Language Turkish
Subjects Mechanical Engineering
Journal Section Research Article
Authors

Hakan Burçin Erdoğuş 0000-0002-2947-7510

Early Pub Date October 14, 2022
Publication Date December 31, 2022
Submission Date June 21, 2022
Published in Issue Year 2022 Volume: 6 Issue: 3

Cite

APA Erdoğuş, H. B. (2022). ALTIGEN BİRİM HÜCRELİ STENT TASARIMININ PERFORMANS ANALİZLERİ VE FDM İLE TEK KATMANLI ÜRETİLEBİLİRLİK ÇALIŞMASI. International Journal of 3D Printing Technologies and Digital Industry, 6(3), 347-357. https://doi.org/10.46519/ij3dptdi.1134055
AMA Erdoğuş HB. ALTIGEN BİRİM HÜCRELİ STENT TASARIMININ PERFORMANS ANALİZLERİ VE FDM İLE TEK KATMANLI ÜRETİLEBİLİRLİK ÇALIŞMASI. IJ3DPTDI. December 2022;6(3):347-357. doi:10.46519/ij3dptdi.1134055
Chicago Erdoğuş, Hakan Burçin. “ALTIGEN BİRİM HÜCRELİ STENT TASARIMININ PERFORMANS ANALİZLERİ VE FDM İLE TEK KATMANLI ÜRETİLEBİLİRLİK ÇALIŞMASI”. International Journal of 3D Printing Technologies and Digital Industry 6, no. 3 (December 2022): 347-57. https://doi.org/10.46519/ij3dptdi.1134055.
EndNote Erdoğuş HB (December 1, 2022) ALTIGEN BİRİM HÜCRELİ STENT TASARIMININ PERFORMANS ANALİZLERİ VE FDM İLE TEK KATMANLI ÜRETİLEBİLİRLİK ÇALIŞMASI. International Journal of 3D Printing Technologies and Digital Industry 6 3 347–357.
IEEE H. B. Erdoğuş, “ALTIGEN BİRİM HÜCRELİ STENT TASARIMININ PERFORMANS ANALİZLERİ VE FDM İLE TEK KATMANLI ÜRETİLEBİLİRLİK ÇALIŞMASI”, IJ3DPTDI, vol. 6, no. 3, pp. 347–357, 2022, doi: 10.46519/ij3dptdi.1134055.
ISNAD Erdoğuş, Hakan Burçin. “ALTIGEN BİRİM HÜCRELİ STENT TASARIMININ PERFORMANS ANALİZLERİ VE FDM İLE TEK KATMANLI ÜRETİLEBİLİRLİK ÇALIŞMASI”. International Journal of 3D Printing Technologies and Digital Industry 6/3 (December 2022), 347-357. https://doi.org/10.46519/ij3dptdi.1134055.
JAMA Erdoğuş HB. ALTIGEN BİRİM HÜCRELİ STENT TASARIMININ PERFORMANS ANALİZLERİ VE FDM İLE TEK KATMANLI ÜRETİLEBİLİRLİK ÇALIŞMASI. IJ3DPTDI. 2022;6:347–357.
MLA Erdoğuş, Hakan Burçin. “ALTIGEN BİRİM HÜCRELİ STENT TASARIMININ PERFORMANS ANALİZLERİ VE FDM İLE TEK KATMANLI ÜRETİLEBİLİRLİK ÇALIŞMASI”. International Journal of 3D Printing Technologies and Digital Industry, vol. 6, no. 3, 2022, pp. 347-5, doi:10.46519/ij3dptdi.1134055.
Vancouver Erdoğuş HB. ALTIGEN BİRİM HÜCRELİ STENT TASARIMININ PERFORMANS ANALİZLERİ VE FDM İLE TEK KATMANLI ÜRETİLEBİLİRLİK ÇALIŞMASI. IJ3DPTDI. 2022;6(3):347-5.

download

International Journal of 3D Printing Technologies and Digital Industry is lisenced under Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı