Research Article
BibTex RIS Cite

3B YAZICIYLA BASKILANAN ÇİMENTO ESASLI HARÇLARDA KATMANLAR ARASI BAĞ DAYANIMININ İNCELENMESİ

Year 2023, Volume: 7 Issue: 3, 362 - 370, 31.12.2023
https://doi.org/10.46519/ij3dptdi.1316578

Abstract

Geleneksel yöntemlerle bina üretimi yıllardır kullanılmakta olan bir yöntemken, son yıllarda üç boyutlu yazıcılarla bina üretimi giderek daha popüler hale gelmektedir. Üç boyutlu yazıcılarla üretilen yapıların en önemli özelliklerinden biri, katmanlı üretim tekniğidir. Bu çalışmada, eklemeli imalat yöntemi ile 25 katmanlı olarak baskılanan bir yapının en alt katmandan en üst katmana kadar olan katmanlar arası bağ dayanımı incelenmiştir. Üst üste gelen katmanların ağırlıklarının katmanlar arası bağ bölgelerine etkisi ve yazdırılma aşamasında oluşacak herhangi bir kesintiden ötürü oluşabilecek soğuk derz riski farklı zamanlarda bekleme gerçekleştirilerek araştırılmıştır. Öncelikle taze harcın ekstrüde edilebilirlik ve akışkanlığa karşı gösterdiği direnç özellikleri arasındaki ilişki belirlenmiştir. Priz alma süresine bakıldığında yazdırılma işleminden 90 dk sonra priz başladığı ve 250 dk geçtikten sonra da priz işleminin sona erdiği görüldü. Katmanlar arası bağ dayanımlarına bakıldığında ilk yazdırılan yani alt katmanların arasındaki bağ dayanımının üst katmanlar arasındakine göre daha fazla olduğu görülmüştür. Farklı zaman aralıklarında soğuk derz oluşturulan katmanların bağ dayanımı incelendiğinde her geçen zamanın katmanlar arası bağ dayanımını düşürdüğü gözlemlenmiştir.

References

  • 1. Aramburu A., Calderon-Uriszar-Aldaca I., Puente I., “3D printing effect on the compressive strength of concrete structures”, Construction and Building Materials, Vol. 354, Issue 129108, 2022.
  • 2. Singh A., Liu Q., Xiao J., Lyu Q., “Mechanical and macrostructural properties of 3D printed concrete dosed with steel fibers under different loading direction”, Construction and Building Materials, Vol. 323, Issue 126616, 2022.
  • 3. Al-Qutaifi S., Nazari A., Bagheri A., “Mechanical properties of layered geopolymer structures applicable in concrete 3D-printing”, Construction and Building Materials, Vol. 176, Pages 690-699, 2018.
  • 4. Weng Y., Li M., Wong T.N., Tan M.J., “Synchronized concrete and bonding agent deposition system for interlayer bond strength enhancement in 3D concrete printing”, Automation in Construction, Vol. 123, Issue 103546, 2021.
  • 5. Michelle A. Helsel, John S. Popovics, Peter B. Stynoski, Eric Kreiger, Non-destructive testing to characterize interlayer bonds of idealized concrete additive manufacturing products, NDT & E International, Vol. 121, Issue 102443, 2021.
  • 6. Baduge S.K., Navaratnam S., Abu-Zidan Y., McCormack T., Nguyen K., Mendis P., Zhang G., Aye L., “Improving performance of additive manufactured (3D printed) concrete: A review on material mix design, processing”, interlayer bonding, and reinforcing methods, Structures, Vol. 29, Pages 1597-1609, 2021.
  • 7. Kloft H., Krauss H., Hack N., Herrmann E., Neudecker S., Varady P.A., Lowke D., “Influence of process parameters on the interlayer bond strength of concrete elements additive manufactured by Shotcrete 3D Printing (SC3DP)”, Cement and Concrete Research, Vol. 134, Issue 106078, 2020.
  • 8. Huang X., Yang W., Song F., Zou J., “Study on the mechanical properties of 3D printing concrete layers and the mechanism of influence of printing parameters”, Construction and Building Materials, Vol. 335, Issue 127496, 2022.
  • 9. Maier M., Lees J., “Interlayer fracture behaviour of functionally layered concrete”, Engineering Fracture Mechanics, Vol. 271, Issue 108672, 2022.
  • 10. Liu C., Wang X., Chen Y., Zhang C., Ma L., Deng Z., Chen C., Zhang Y., Pan J., Banthia N., “Influence of hydroxypropyl methylcellulose and silica fume on stability, rheological properties, and printability of 3D printing foam concrete”, Cement and Concrete Composites, Vol. 122, Issue 104158, 2021.
  • 11. Roussel N., “Rheological requirements for printable concretes”, Cement and Concrete Research, Vol. 112, Pages 76-85, 2018.
  • 12. Yuan Q., Li Z., Zhou D., Huang T., Huang H., Jiao D., Shi C., “A feasible method for measuring the buildability of fresh 3D printing mortar”, Construction and Building Materials, Vol. 227, Issue 116600, 2019.
  • 13. Pan T., Guo R., Jiang Y., Ji X., “How do the contact surface forces affect the interlayer bond strength of 3D printed mortar?, Cement and Concrete Composites, Vol. 133, Issue 104675, 2022.
  • 14. Li Q., Gao X., Su A., Lu X., “Interlayer adhesion strength of 3D-printed cement-based materials exposed to varying curing conditions”, Journal of Building Engineering, Vol. 74, Issue 106825, 2023.
  • 15. Aramburu A., Calderon-Uriszar-Aldaca I., Puente I., “Wet joint performance of 3D printed concrete beam segments under flexural loading”,Journal of Building Engineering, Vol. 73, Issue 106728, 2023.
  • 16. Lim S., Buswell R.A., Le T.T., Austin S.A., Gibb A.G.F., Thorpe T., “Developments in construction-scale additive manufacturing processes”, Automation in Construction, Vol. 21, Pages 262-268, 2012.
  • 17. Chen Y., Chang Z., He S., Çopuroğlu O., Šavija B., Schlangen E., “Effect of curing methods during a long time gap between two printing sessions on the interlayer bonding of 3D printed cementitious materials”, Construction and Building Materials, Vol. 332, Issue 127394, 2022.

Investigation of Interlayer Bond Strength in Cement-Based Mortars Printed with 3D Printer

Year 2023, Volume: 7 Issue: 3, 362 - 370, 31.12.2023
https://doi.org/10.46519/ij3dptdi.1316578

Abstract

While traditional methods have been used for building construction for years, the use of 3D printers for building production has become increasingly popular in recent years. One of the most important features of structures produced with 3D printers is the layered manufacturing technique. In this study, the interlayer bond strength of a structure printed with an additive manufacturing method in 25 layers, from the bottom layer to the top layer, was investigated. The influence of the weights of the overlapping layers on the interlayer bond regions and the risk of cold joints that may occur due to any interruptions during the printing stage were examined by conducting waiting periods at different times. Firstly, the relationship between the extrudability and resistance properties of the fresh mortar against fluidity was determined. Looking at the setting time, it was observed that the initial setting occurred 90 minutes after the printing process and the final setting occurred after 250 minutes. When examining the interlayer bond strengths, it was found that the bond strength between the first printed layers, i.e., the lower layers, was higher than that between the upper layers. The examination of interlayer bond strengths of layers with cold joints formed at different time intervals revealed that each passing time reduced the interlayer bond strength.

References

  • 1. Aramburu A., Calderon-Uriszar-Aldaca I., Puente I., “3D printing effect on the compressive strength of concrete structures”, Construction and Building Materials, Vol. 354, Issue 129108, 2022.
  • 2. Singh A., Liu Q., Xiao J., Lyu Q., “Mechanical and macrostructural properties of 3D printed concrete dosed with steel fibers under different loading direction”, Construction and Building Materials, Vol. 323, Issue 126616, 2022.
  • 3. Al-Qutaifi S., Nazari A., Bagheri A., “Mechanical properties of layered geopolymer structures applicable in concrete 3D-printing”, Construction and Building Materials, Vol. 176, Pages 690-699, 2018.
  • 4. Weng Y., Li M., Wong T.N., Tan M.J., “Synchronized concrete and bonding agent deposition system for interlayer bond strength enhancement in 3D concrete printing”, Automation in Construction, Vol. 123, Issue 103546, 2021.
  • 5. Michelle A. Helsel, John S. Popovics, Peter B. Stynoski, Eric Kreiger, Non-destructive testing to characterize interlayer bonds of idealized concrete additive manufacturing products, NDT & E International, Vol. 121, Issue 102443, 2021.
  • 6. Baduge S.K., Navaratnam S., Abu-Zidan Y., McCormack T., Nguyen K., Mendis P., Zhang G., Aye L., “Improving performance of additive manufactured (3D printed) concrete: A review on material mix design, processing”, interlayer bonding, and reinforcing methods, Structures, Vol. 29, Pages 1597-1609, 2021.
  • 7. Kloft H., Krauss H., Hack N., Herrmann E., Neudecker S., Varady P.A., Lowke D., “Influence of process parameters on the interlayer bond strength of concrete elements additive manufactured by Shotcrete 3D Printing (SC3DP)”, Cement and Concrete Research, Vol. 134, Issue 106078, 2020.
  • 8. Huang X., Yang W., Song F., Zou J., “Study on the mechanical properties of 3D printing concrete layers and the mechanism of influence of printing parameters”, Construction and Building Materials, Vol. 335, Issue 127496, 2022.
  • 9. Maier M., Lees J., “Interlayer fracture behaviour of functionally layered concrete”, Engineering Fracture Mechanics, Vol. 271, Issue 108672, 2022.
  • 10. Liu C., Wang X., Chen Y., Zhang C., Ma L., Deng Z., Chen C., Zhang Y., Pan J., Banthia N., “Influence of hydroxypropyl methylcellulose and silica fume on stability, rheological properties, and printability of 3D printing foam concrete”, Cement and Concrete Composites, Vol. 122, Issue 104158, 2021.
  • 11. Roussel N., “Rheological requirements for printable concretes”, Cement and Concrete Research, Vol. 112, Pages 76-85, 2018.
  • 12. Yuan Q., Li Z., Zhou D., Huang T., Huang H., Jiao D., Shi C., “A feasible method for measuring the buildability of fresh 3D printing mortar”, Construction and Building Materials, Vol. 227, Issue 116600, 2019.
  • 13. Pan T., Guo R., Jiang Y., Ji X., “How do the contact surface forces affect the interlayer bond strength of 3D printed mortar?, Cement and Concrete Composites, Vol. 133, Issue 104675, 2022.
  • 14. Li Q., Gao X., Su A., Lu X., “Interlayer adhesion strength of 3D-printed cement-based materials exposed to varying curing conditions”, Journal of Building Engineering, Vol. 74, Issue 106825, 2023.
  • 15. Aramburu A., Calderon-Uriszar-Aldaca I., Puente I., “Wet joint performance of 3D printed concrete beam segments under flexural loading”,Journal of Building Engineering, Vol. 73, Issue 106728, 2023.
  • 16. Lim S., Buswell R.A., Le T.T., Austin S.A., Gibb A.G.F., Thorpe T., “Developments in construction-scale additive manufacturing processes”, Automation in Construction, Vol. 21, Pages 262-268, 2012.
  • 17. Chen Y., Chang Z., He S., Çopuroğlu O., Šavija B., Schlangen E., “Effect of curing methods during a long time gap between two printing sessions on the interlayer bonding of 3D printed cementitious materials”, Construction and Building Materials, Vol. 332, Issue 127394, 2022.
There are 17 citations in total.

Details

Primary Language Turkish
Subjects Manufacturing and Industrial Engineering (Other)
Journal Section Research Article
Authors

Tayfun Uygunoğlu 0000-0003-4382-8257

Feyza Çetingül 0000-0002-7750-0850

Early Pub Date December 25, 2023
Publication Date December 31, 2023
Submission Date June 19, 2023
Published in Issue Year 2023 Volume: 7 Issue: 3

Cite

APA Uygunoğlu, T., & Çetingül, F. (2023). 3B YAZICIYLA BASKILANAN ÇİMENTO ESASLI HARÇLARDA KATMANLAR ARASI BAĞ DAYANIMININ İNCELENMESİ. International Journal of 3D Printing Technologies and Digital Industry, 7(3), 362-370. https://doi.org/10.46519/ij3dptdi.1316578
AMA Uygunoğlu T, Çetingül F. 3B YAZICIYLA BASKILANAN ÇİMENTO ESASLI HARÇLARDA KATMANLAR ARASI BAĞ DAYANIMININ İNCELENMESİ. IJ3DPTDI. December 2023;7(3):362-370. doi:10.46519/ij3dptdi.1316578
Chicago Uygunoğlu, Tayfun, and Feyza Çetingül. “3B YAZICIYLA BASKILANAN ÇİMENTO ESASLI HARÇLARDA KATMANLAR ARASI BAĞ DAYANIMININ İNCELENMESİ”. International Journal of 3D Printing Technologies and Digital Industry 7, no. 3 (December 2023): 362-70. https://doi.org/10.46519/ij3dptdi.1316578.
EndNote Uygunoğlu T, Çetingül F (December 1, 2023) 3B YAZICIYLA BASKILANAN ÇİMENTO ESASLI HARÇLARDA KATMANLAR ARASI BAĞ DAYANIMININ İNCELENMESİ. International Journal of 3D Printing Technologies and Digital Industry 7 3 362–370.
IEEE T. Uygunoğlu and F. Çetingül, “3B YAZICIYLA BASKILANAN ÇİMENTO ESASLI HARÇLARDA KATMANLAR ARASI BAĞ DAYANIMININ İNCELENMESİ”, IJ3DPTDI, vol. 7, no. 3, pp. 362–370, 2023, doi: 10.46519/ij3dptdi.1316578.
ISNAD Uygunoğlu, Tayfun - Çetingül, Feyza. “3B YAZICIYLA BASKILANAN ÇİMENTO ESASLI HARÇLARDA KATMANLAR ARASI BAĞ DAYANIMININ İNCELENMESİ”. International Journal of 3D Printing Technologies and Digital Industry 7/3 (December 2023), 362-370. https://doi.org/10.46519/ij3dptdi.1316578.
JAMA Uygunoğlu T, Çetingül F. 3B YAZICIYLA BASKILANAN ÇİMENTO ESASLI HARÇLARDA KATMANLAR ARASI BAĞ DAYANIMININ İNCELENMESİ. IJ3DPTDI. 2023;7:362–370.
MLA Uygunoğlu, Tayfun and Feyza Çetingül. “3B YAZICIYLA BASKILANAN ÇİMENTO ESASLI HARÇLARDA KATMANLAR ARASI BAĞ DAYANIMININ İNCELENMESİ”. International Journal of 3D Printing Technologies and Digital Industry, vol. 7, no. 3, 2023, pp. 362-70, doi:10.46519/ij3dptdi.1316578.
Vancouver Uygunoğlu T, Çetingül F. 3B YAZICIYLA BASKILANAN ÇİMENTO ESASLI HARÇLARDA KATMANLAR ARASI BAĞ DAYANIMININ İNCELENMESİ. IJ3DPTDI. 2023;7(3):362-70.

download

International Journal of 3D Printing Technologies and Digital Industry is lisenced under Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı