Research Article
BibTex RIS Cite

EVALUATION OF MECHANOBIOLOGICAL POTENTIAL OF 3D-PRINTED PLA BONE TISSUE SCAFFOLDS WITH DIFFERENT PORE ARCHITECTURES AND POROSITY RATIOS

Year 2024, Volume: 8 Issue: 2, 173 - 184, 30.08.2024
https://doi.org/10.46519/ij3dptdi.1449545

Abstract

Lattice structures are widely used in bone tissue scaffold designs due to interconnected porous structures that mimic the natural extracellular matrix (ECM) to treat large bone defects. This study investigated the mechanical behavior of scaffolds with different pore architectures and porosity ratios using experimental and numerical methods. In addition, mechanobiological potentials of scaffolds were evaluated in terms of the specific energy absorption and the specific surface area. Three different geometries were created by varying the combination of vertical, horizontal, and diagonal struts to evaluate the geometric factor and 50%, 62.5, and 75% porosity ratios are examined as potential permeabilities. Compression tests were performed to calculate stiffness values and energy absorptions of the scaffolds. Finite element simulations were used to obtain stiffness values of scaffolds. The specific energy absorptions of scaffolds were calculated under 4 N compressive load as a representative of potential body loads. According to the results, it was found that pore architectures and porosity ratios had crucial effects on stiffness values, energy absorption levels, specific energy absorption, and specific surface area which may lead to significant differences in bone remodeling. The highest specific energy absorption was observed in the scaffolds designed with only diagonal struts with 75% porosity. The highest specific surface area was observed in the scaffolds designed with the combination of vertical, horizontal, and diagonal struts with 75% porosity.

Project Number

222M025

References

  • 1. Li, J., Li, H., Shi, L., Fok, A. S., Ucer, C., Devlin, H., ... & Silikas, N., “A mathematical model for simulating the bone remodeling process under mechanical stimulus”, Dental materials Vol. 13, Issue 9, Pages 1073-1078, 2007.
  • 2. Zhao, Y., & Zhang, G., “A computational study of the dual effect of intermittent and continuous administration of parathyroid hormone on bone remodeling”, Acta Biomaterialia, Vol. 93, Pages 200-209, 2019.
  • 3. Cowin, S. C., & Hegedus, D., “Bone remodeling I: theory of adaptive elasticity”, Journal of Elasticity, Vol. 6, Pages 313-326, 1976.
  • 4. Pearce, C. J., “Efficient numerical analysis of bone remodelling”, Journal of the Mechanical Behavior of Biomedical Materials, Vol. 4, Issue 6, Pages 858-867, 2011.
  • 5. Zhang, Y., Zhang, C., Wang, J., Liu, H., & Wang, M., “Bone‐Adipose Tissue Crosstalk: Role of Adipose Tissue Derived Extracellular Vesicles in Bone Diseases”, Journal of Cellular Physiology, Vol. 236, Issue 11, Pages 7874-7886, 2021.
  • 6. Shoji-Matsunaga, A., Ono, T., Hayashi, M., Takayanagi, H., Moriyama, K., & Nakashima, T., “Osteocyte regulation of orthodontic force-mediated tooth movement via RANKL expression”, Scientific reports, Vol. 7 Issue 1, 8753, 2017.
  • 7. Rémond, A., Naïli, S., & Lemaire, T., “Interstitial fluid flow in the osteon with spatial gradients of mechanical properties: a finite element study”, Biomechanics and modeling in Mechanobiology, Vol. 7, Pages 487-495, 2008.
  • 8. Smit, T. H., & Burger, E. H., “Is BMU‐coupling a strain‐regulated phenomenon? A finite element analysis”, Journal of Bone and Mineral Research, Vol. 15, Issue 2, Pages 301-307, 2000.
  • 9. Nwankwo, E. C., Chen, F., Nettles, D. L., & Adams, S. B., “Five-year follow-up of distal tibia bone and foot and ankle trauma treated with a 3D-printed titanium cage”, Case Reports in Orthopedics, Vol. 2019, 2019.
  • 10. Fernandes, M. B. C., Guimarães, J. A. M., Casado, P. L., Cavalcanti, A. D. S., Gonçalves, N. N., Ambrósio, C. E., ... & Duarte, M. E. L., “The effect of bone allografts combined with bone marrow stromal cells on the healing of segmental bone defects in a sheep model”, BMC veterinary research, Vol. 10, Issue 1, Pages 1-12, 2014.
  • 11. Long, T., Zhu, Z., Awad, H. A., Schwarz, E. M., Hilton, M. J., & Dong, Y., “The effect of mesenchymal stem cell sheets on structural allograft healing of critical sized femoral defects in mice”, Biomaterials, Vol. 35, Issue 9, Pages 2752-2759, 2014.
  • 12. Zhao, Z. H., Ma, X. L., Zhao, B., Tian, P., Ma, J. X., Kang, J. Y., ... & Sun, L., “Naringin‐inlaid silk fibroin/hydroxyapatite scaffold enhances human umbilical cord‐derived mesenchymal stem cell‐based bone regeneration”, Cell Proliferation, Vol. 54, Issue 7, e13043, 2021.
  • 13. Carulli, C., Matassi, F., Civinini, R., & Innocenti, M., “Tissue engineering applications in the management of bone loss”, Clinical cases in mineral and bone metabolism, Vol. 10, Issue 1, Pages 22-25, 2013.
  • 14. Guilak, F., Butler, D. L., Goldstein, S. A., & Baaijens, F. P., “Biomechanics and mechanobiology in functional tissue engineering”, Journal of biomechanics, Vol. 47, Issue 9, Pages 1933-1940, 2014.
  • 15. Mi, H. Y., Jing, X., & Turng, L. S., “Fabrication of porous synthetic polymer scaffolds for tissue engineering”, Journal of Cellular Plastics, Vol. 51, Issue 2, Pages 165-196, 2015.
  • 16. Paladini, F., & Pollini, M., “Novel approaches and biomaterials for bone tissue engineering: a focus on silk fibroin”, Materials, Vol. 15, Issue 19, 6952, 2022.
  • 17. Kagami, H., Agata, H., & Tojo, A., “Bone marrow stromal cells (bone marrow-derived multipotent mesenchymal stromal cells) for bone tissue engineering: basic science to clinical translation”, The international journal of biochemistry & cell biology, Vol. 43, Issue 3, Pages 286-289, 2011.
  • 18. Thein-Han, W. W., & Misra, R. D. K., “Three-dimensional chitosan-nanohydroxyapatite composite scaffolds for bone tissue engineering”, JOM, Vol. 61, Pages 41-44, 2009.
  • 19. Shadjou, N., & Hasanzadeh, M., “Graphene and its nanostructure derivatives for use in bone tissue engineering: Recent advances”, Journal of Biomedical Materials Research Part A, Vol. 104, Issue 5, Pages 1250-1275, 2016.
  • 20. Lin, C. Y., & Kang, J. H., “Mechanical properties of compact bone defined by the stress-strain curve measured using uniaxial tensile test: a concise review and practical guide”, Materials, Vol. 14, Issue 15, 4224, 2021.
  • 21. Chen, J., “Recent development of biomaterials combined with mesenchymal stem cells as a strategy in cartilage regeneration”, International Journal of Translational Medicine, Vol. 2, Issue 3, Pages 456-481, 2022.
  • 22. Qu, H., Fu, H., Han, Z., & Sun, Y., “Biomaterials for bone tissue engineering scaffolds: A review”, RSC advances, Vol. 9, Issue 45, Pages 26252-26262, 2019.
  • 23. Collins, M. N., Ren, G., Young, K., Pina, S., Reis, R. L., & Oliveira, J. M., “Scaffold fabrication technologies and structure/function properties in bone tissue engineering”, Advanced functional materials, Vol. 31, Issue 21, 210609, 2021.
  • 24. Suamte, L., Tirkey, A., Barman, J., & Babu, P. J., “Various manufacturing methods and ideal properties of scaffolds for tissue engineering applications”, Smart Materials in Manufacturing, Vol. 1, 100011, 2023.
  • 25. Wang, L., You, X., Zhang, L., Zhang, C., & Zou, W., “Mechanical regulation of bone remodeling”, Bone Research, Vol. 10, Issue 1, 16, 2022.
  • 26. Shi, Q., Chen, Q., Pugno, N., & Li, Z. Y., “Effect of rehabilitation exercise durations on the dynamic bone repair process by coupling polymer scaffold degradation and bone formation”, Biomechanics and Modeling in Mechanobiology, Vol. 17, Pages 763-775, 2018.
  • 27. Sun, W., Li, Y., Li, J., Tan, Y., Yuan, X., Meng, H., ... & Li, Y., “Mechanical stimulation controls osteoclast function through the regulation of Ca2+-activated Cl− channel Anoctamin 1”, Communications Biology, Vol. 6, Issue 1, 407, 2023.
  • 28. Vatsa, A., Mizuno, D., Smit, T. H., Schmidt, C. F., MacKintosh, F. C., & Klein‐Nulend, J., “Bio imaging of intracellular NO production in single bone cells after mechanical stimulation”, Bone and Mineral Research, Vol. 21, Issue 11, Pages 1722-1728, 2006.
  • 29. Onal, E., Frith, J. E., Jurg, M., Wu, X., & Molotnikov, A., “Mechanical properties and in vitro behavior of additively manufactured and functionally graded Ti6Al4V porous scaffolds”, Metals, Vol. 8, Issue 4, 200, 2018.
  • 30. Deng, F., Liu, L., Li, Z., & Liu, J., “3D printed Ti6Al4V bone scaffolds with different pore structure effects on bone ingrowth”, Journal of biological engineering, Vol. 15, Pages 1-13, 2021.
  • 31. Karaman, D., & Ghahramanzadeh Asl, H., “Biomechanical behavior of diamond lattice scaffolds obtained by two different design approaches with similar porosity; a numerical investigation with FEM and CFD analysis”, Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, Vol. 236, Issue 6, Pages 794-810, 2022.
  • 32. Zhang, X. Y., Fang, G., Xing, L. L., Liu, W., & Zhou, J., “Effect of porosity variation strategy on the performance of functionally graded Ti-6Al-4V scaffolds for bone tissue engineering”, Materials & Design, Vol. 157, Pages 523-538, 2018.
  • 33. Dawson, E. R., Suzuki, R. K., Samano, M. A., & Murphy, M. B., “Increased internal porosity and surface area of hydroxyapatite accelerates healing and compensates for low bone marrow mesenchymal stem cell concentrations in critically-sized bone defects”, Applied Sciences, Vol. 8, Issue 8, 1366, 2018.
  • 34. Buizer, A. T., Veldhuizen, A. G., Bulstra, S. K., & Kuijer, R., “Static versus vacuum cell seeding on high and low porosity ceramic scaffolds”, Journal of biomaterials applications, Vol. 29, Issue 1, Pages 3-13, 2014.
  • 35. Kontogianni, G. I., Loukelis, K., Bonatti, A. F., Batoni, E., De Maria, C., Naseem, R., ... & Chatzinikolaidou, M., “Effect of Uniaxial Compression Frequency on Osteogenic Cell Responses in Dynamic 3D Cultures”, Bioengineering, Vol. 10, Issue 5, 532, 2023.
  • 36. Narayanan, G., Vernekar, V. N., Kuyinu, E. L., & Laurencin, C. T., “Poly (lactic acid)-based biomaterials for orthopaedic regenerative engineering”, Advanced drug delivery reviews, Vol. 107, Pages 247-276, 2016.
  • 37. Alavi, M. S., Memarpour, S., Pazhohan‐Nezhad, H., Salimi Asl, A., Moghbeli, M., Shadmanfar, S., & Saburi, E., “Applications of poly (lactic acid) in bone tissue engineering: A review article”, Artificial Organs, Vol. 47, Issue 9, Pages 1423-1430, 2023.
  • 38. Gibson, L. J., “Cellular solids”, Pages 93-172, Mrs Bulletin, Cambridge, 2003.
  • 39. Demirci E., Şenaysoy S., Tuğcu S. E., “The Effect of Nozzle Diameter and Layer Thickness on Mechanical Behavior of 3D Printed PLA Lattice Structures Under Quasi-Static Loading”, Int. J. of 3D Printing Tech. Dig. Ind., Vol. 7, Issue 1, Pages 105-113, 2023.
  • 40. T. Chandrupatla and A. Belegundu, “Introduction to Finite Elements in Engineering”, Pages 214-258, Cambridge University Press, Cambridge, 2022.
  • 41. Gorriz, C., Ribeiro, F., Guedes, J. M., Folgado, J., & Fernandes, P. R., “A Biomechanical Approach for Bone Regeneration Inside Scaffolds Embedded with BMP-2”, New Developments in Tissue Engineering and Regeneration, Vol. 51, Pages 67-86, 2019.
  • 42. Li, J. J., Dunstan, C. R., Entezari, A., Li, Q., Steck, R., Saifzadeh, S., ... & Zreiqat, H., “A novel bone substitute with high bioactivity, strength, and porosity for repairing large and load‐bearing bone defects”, Advanced healthcare materials, Vol. 8, Issue 8, 1801298, 2019.
  • 43. Milan, J. L., Planell, J. A., & Lacroix, D., “Simulation of bone tissue formation within a porous scaffold under dynamic compression”, Biomechanics and modeling in mechanobiology, Vol. 9, Pages 583-596, 2010.
  • 44. Shi, Q., Chen, Q., Pugno, N., & Li, Z. Y., “Effect of rehabilitation exercise durations on the dynamic bone repair process by coupling polymer scaffold degradation and bone formation”, Biomechanics and Modeling in Mechanobiology, Vol. 17, Pages 763-775, 2018.
  • 45. Tovar, N., Witek, L., Atria, P., Sobieraj, M., Bowers, M., Lopez, C. D., ... & Coelho, P. G., “Form and functional repair of long bone using 3D‐printed bioactive scaffolds”, Journal of tissue engineering and regenerative medicine, Vol. 12, Issue 9, Pages 1986-1999, 2018.
Year 2024, Volume: 8 Issue: 2, 173 - 184, 30.08.2024
https://doi.org/10.46519/ij3dptdi.1449545

Abstract

Supporting Institution

Türkiye Bilimsel ve Teknik Araştırma Kurumu (Tübitak)

Project Number

222M025

References

  • 1. Li, J., Li, H., Shi, L., Fok, A. S., Ucer, C., Devlin, H., ... & Silikas, N., “A mathematical model for simulating the bone remodeling process under mechanical stimulus”, Dental materials Vol. 13, Issue 9, Pages 1073-1078, 2007.
  • 2. Zhao, Y., & Zhang, G., “A computational study of the dual effect of intermittent and continuous administration of parathyroid hormone on bone remodeling”, Acta Biomaterialia, Vol. 93, Pages 200-209, 2019.
  • 3. Cowin, S. C., & Hegedus, D., “Bone remodeling I: theory of adaptive elasticity”, Journal of Elasticity, Vol. 6, Pages 313-326, 1976.
  • 4. Pearce, C. J., “Efficient numerical analysis of bone remodelling”, Journal of the Mechanical Behavior of Biomedical Materials, Vol. 4, Issue 6, Pages 858-867, 2011.
  • 5. Zhang, Y., Zhang, C., Wang, J., Liu, H., & Wang, M., “Bone‐Adipose Tissue Crosstalk: Role of Adipose Tissue Derived Extracellular Vesicles in Bone Diseases”, Journal of Cellular Physiology, Vol. 236, Issue 11, Pages 7874-7886, 2021.
  • 6. Shoji-Matsunaga, A., Ono, T., Hayashi, M., Takayanagi, H., Moriyama, K., & Nakashima, T., “Osteocyte regulation of orthodontic force-mediated tooth movement via RANKL expression”, Scientific reports, Vol. 7 Issue 1, 8753, 2017.
  • 7. Rémond, A., Naïli, S., & Lemaire, T., “Interstitial fluid flow in the osteon with spatial gradients of mechanical properties: a finite element study”, Biomechanics and modeling in Mechanobiology, Vol. 7, Pages 487-495, 2008.
  • 8. Smit, T. H., & Burger, E. H., “Is BMU‐coupling a strain‐regulated phenomenon? A finite element analysis”, Journal of Bone and Mineral Research, Vol. 15, Issue 2, Pages 301-307, 2000.
  • 9. Nwankwo, E. C., Chen, F., Nettles, D. L., & Adams, S. B., “Five-year follow-up of distal tibia bone and foot and ankle trauma treated with a 3D-printed titanium cage”, Case Reports in Orthopedics, Vol. 2019, 2019.
  • 10. Fernandes, M. B. C., Guimarães, J. A. M., Casado, P. L., Cavalcanti, A. D. S., Gonçalves, N. N., Ambrósio, C. E., ... & Duarte, M. E. L., “The effect of bone allografts combined with bone marrow stromal cells on the healing of segmental bone defects in a sheep model”, BMC veterinary research, Vol. 10, Issue 1, Pages 1-12, 2014.
  • 11. Long, T., Zhu, Z., Awad, H. A., Schwarz, E. M., Hilton, M. J., & Dong, Y., “The effect of mesenchymal stem cell sheets on structural allograft healing of critical sized femoral defects in mice”, Biomaterials, Vol. 35, Issue 9, Pages 2752-2759, 2014.
  • 12. Zhao, Z. H., Ma, X. L., Zhao, B., Tian, P., Ma, J. X., Kang, J. Y., ... & Sun, L., “Naringin‐inlaid silk fibroin/hydroxyapatite scaffold enhances human umbilical cord‐derived mesenchymal stem cell‐based bone regeneration”, Cell Proliferation, Vol. 54, Issue 7, e13043, 2021.
  • 13. Carulli, C., Matassi, F., Civinini, R., & Innocenti, M., “Tissue engineering applications in the management of bone loss”, Clinical cases in mineral and bone metabolism, Vol. 10, Issue 1, Pages 22-25, 2013.
  • 14. Guilak, F., Butler, D. L., Goldstein, S. A., & Baaijens, F. P., “Biomechanics and mechanobiology in functional tissue engineering”, Journal of biomechanics, Vol. 47, Issue 9, Pages 1933-1940, 2014.
  • 15. Mi, H. Y., Jing, X., & Turng, L. S., “Fabrication of porous synthetic polymer scaffolds for tissue engineering”, Journal of Cellular Plastics, Vol. 51, Issue 2, Pages 165-196, 2015.
  • 16. Paladini, F., & Pollini, M., “Novel approaches and biomaterials for bone tissue engineering: a focus on silk fibroin”, Materials, Vol. 15, Issue 19, 6952, 2022.
  • 17. Kagami, H., Agata, H., & Tojo, A., “Bone marrow stromal cells (bone marrow-derived multipotent mesenchymal stromal cells) for bone tissue engineering: basic science to clinical translation”, The international journal of biochemistry & cell biology, Vol. 43, Issue 3, Pages 286-289, 2011.
  • 18. Thein-Han, W. W., & Misra, R. D. K., “Three-dimensional chitosan-nanohydroxyapatite composite scaffolds for bone tissue engineering”, JOM, Vol. 61, Pages 41-44, 2009.
  • 19. Shadjou, N., & Hasanzadeh, M., “Graphene and its nanostructure derivatives for use in bone tissue engineering: Recent advances”, Journal of Biomedical Materials Research Part A, Vol. 104, Issue 5, Pages 1250-1275, 2016.
  • 20. Lin, C. Y., & Kang, J. H., “Mechanical properties of compact bone defined by the stress-strain curve measured using uniaxial tensile test: a concise review and practical guide”, Materials, Vol. 14, Issue 15, 4224, 2021.
  • 21. Chen, J., “Recent development of biomaterials combined with mesenchymal stem cells as a strategy in cartilage regeneration”, International Journal of Translational Medicine, Vol. 2, Issue 3, Pages 456-481, 2022.
  • 22. Qu, H., Fu, H., Han, Z., & Sun, Y., “Biomaterials for bone tissue engineering scaffolds: A review”, RSC advances, Vol. 9, Issue 45, Pages 26252-26262, 2019.
  • 23. Collins, M. N., Ren, G., Young, K., Pina, S., Reis, R. L., & Oliveira, J. M., “Scaffold fabrication technologies and structure/function properties in bone tissue engineering”, Advanced functional materials, Vol. 31, Issue 21, 210609, 2021.
  • 24. Suamte, L., Tirkey, A., Barman, J., & Babu, P. J., “Various manufacturing methods and ideal properties of scaffolds for tissue engineering applications”, Smart Materials in Manufacturing, Vol. 1, 100011, 2023.
  • 25. Wang, L., You, X., Zhang, L., Zhang, C., & Zou, W., “Mechanical regulation of bone remodeling”, Bone Research, Vol. 10, Issue 1, 16, 2022.
  • 26. Shi, Q., Chen, Q., Pugno, N., & Li, Z. Y., “Effect of rehabilitation exercise durations on the dynamic bone repair process by coupling polymer scaffold degradation and bone formation”, Biomechanics and Modeling in Mechanobiology, Vol. 17, Pages 763-775, 2018.
  • 27. Sun, W., Li, Y., Li, J., Tan, Y., Yuan, X., Meng, H., ... & Li, Y., “Mechanical stimulation controls osteoclast function through the regulation of Ca2+-activated Cl− channel Anoctamin 1”, Communications Biology, Vol. 6, Issue 1, 407, 2023.
  • 28. Vatsa, A., Mizuno, D., Smit, T. H., Schmidt, C. F., MacKintosh, F. C., & Klein‐Nulend, J., “Bio imaging of intracellular NO production in single bone cells after mechanical stimulation”, Bone and Mineral Research, Vol. 21, Issue 11, Pages 1722-1728, 2006.
  • 29. Onal, E., Frith, J. E., Jurg, M., Wu, X., & Molotnikov, A., “Mechanical properties and in vitro behavior of additively manufactured and functionally graded Ti6Al4V porous scaffolds”, Metals, Vol. 8, Issue 4, 200, 2018.
  • 30. Deng, F., Liu, L., Li, Z., & Liu, J., “3D printed Ti6Al4V bone scaffolds with different pore structure effects on bone ingrowth”, Journal of biological engineering, Vol. 15, Pages 1-13, 2021.
  • 31. Karaman, D., & Ghahramanzadeh Asl, H., “Biomechanical behavior of diamond lattice scaffolds obtained by two different design approaches with similar porosity; a numerical investigation with FEM and CFD analysis”, Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, Vol. 236, Issue 6, Pages 794-810, 2022.
  • 32. Zhang, X. Y., Fang, G., Xing, L. L., Liu, W., & Zhou, J., “Effect of porosity variation strategy on the performance of functionally graded Ti-6Al-4V scaffolds for bone tissue engineering”, Materials & Design, Vol. 157, Pages 523-538, 2018.
  • 33. Dawson, E. R., Suzuki, R. K., Samano, M. A., & Murphy, M. B., “Increased internal porosity and surface area of hydroxyapatite accelerates healing and compensates for low bone marrow mesenchymal stem cell concentrations in critically-sized bone defects”, Applied Sciences, Vol. 8, Issue 8, 1366, 2018.
  • 34. Buizer, A. T., Veldhuizen, A. G., Bulstra, S. K., & Kuijer, R., “Static versus vacuum cell seeding on high and low porosity ceramic scaffolds”, Journal of biomaterials applications, Vol. 29, Issue 1, Pages 3-13, 2014.
  • 35. Kontogianni, G. I., Loukelis, K., Bonatti, A. F., Batoni, E., De Maria, C., Naseem, R., ... & Chatzinikolaidou, M., “Effect of Uniaxial Compression Frequency on Osteogenic Cell Responses in Dynamic 3D Cultures”, Bioengineering, Vol. 10, Issue 5, 532, 2023.
  • 36. Narayanan, G., Vernekar, V. N., Kuyinu, E. L., & Laurencin, C. T., “Poly (lactic acid)-based biomaterials for orthopaedic regenerative engineering”, Advanced drug delivery reviews, Vol. 107, Pages 247-276, 2016.
  • 37. Alavi, M. S., Memarpour, S., Pazhohan‐Nezhad, H., Salimi Asl, A., Moghbeli, M., Shadmanfar, S., & Saburi, E., “Applications of poly (lactic acid) in bone tissue engineering: A review article”, Artificial Organs, Vol. 47, Issue 9, Pages 1423-1430, 2023.
  • 38. Gibson, L. J., “Cellular solids”, Pages 93-172, Mrs Bulletin, Cambridge, 2003.
  • 39. Demirci E., Şenaysoy S., Tuğcu S. E., “The Effect of Nozzle Diameter and Layer Thickness on Mechanical Behavior of 3D Printed PLA Lattice Structures Under Quasi-Static Loading”, Int. J. of 3D Printing Tech. Dig. Ind., Vol. 7, Issue 1, Pages 105-113, 2023.
  • 40. T. Chandrupatla and A. Belegundu, “Introduction to Finite Elements in Engineering”, Pages 214-258, Cambridge University Press, Cambridge, 2022.
  • 41. Gorriz, C., Ribeiro, F., Guedes, J. M., Folgado, J., & Fernandes, P. R., “A Biomechanical Approach for Bone Regeneration Inside Scaffolds Embedded with BMP-2”, New Developments in Tissue Engineering and Regeneration, Vol. 51, Pages 67-86, 2019.
  • 42. Li, J. J., Dunstan, C. R., Entezari, A., Li, Q., Steck, R., Saifzadeh, S., ... & Zreiqat, H., “A novel bone substitute with high bioactivity, strength, and porosity for repairing large and load‐bearing bone defects”, Advanced healthcare materials, Vol. 8, Issue 8, 1801298, 2019.
  • 43. Milan, J. L., Planell, J. A., & Lacroix, D., “Simulation of bone tissue formation within a porous scaffold under dynamic compression”, Biomechanics and modeling in mechanobiology, Vol. 9, Pages 583-596, 2010.
  • 44. Shi, Q., Chen, Q., Pugno, N., & Li, Z. Y., “Effect of rehabilitation exercise durations on the dynamic bone repair process by coupling polymer scaffold degradation and bone formation”, Biomechanics and Modeling in Mechanobiology, Vol. 17, Pages 763-775, 2018.
  • 45. Tovar, N., Witek, L., Atria, P., Sobieraj, M., Bowers, M., Lopez, C. D., ... & Coelho, P. G., “Form and functional repair of long bone using 3D‐printed bioactive scaffolds”, Journal of tissue engineering and regenerative medicine, Vol. 12, Issue 9, Pages 1986-1999, 2018.
There are 45 citations in total.

Details

Primary Language English
Subjects Biomaterial , Mechanical Engineering (Other)
Journal Section Research Article
Authors

Safa Şenaysoy 0000-0002-2982-3209

Hüseyin Lekesiz 0000-0003-3350-1509

Project Number 222M025
Early Pub Date August 30, 2024
Publication Date August 30, 2024
Submission Date March 9, 2024
Acceptance Date August 12, 2024
Published in Issue Year 2024 Volume: 8 Issue: 2

Cite

APA Şenaysoy, S., & Lekesiz, H. (2024). EVALUATION OF MECHANOBIOLOGICAL POTENTIAL OF 3D-PRINTED PLA BONE TISSUE SCAFFOLDS WITH DIFFERENT PORE ARCHITECTURES AND POROSITY RATIOS. International Journal of 3D Printing Technologies and Digital Industry, 8(2), 173-184. https://doi.org/10.46519/ij3dptdi.1449545
AMA Şenaysoy S, Lekesiz H. EVALUATION OF MECHANOBIOLOGICAL POTENTIAL OF 3D-PRINTED PLA BONE TISSUE SCAFFOLDS WITH DIFFERENT PORE ARCHITECTURES AND POROSITY RATIOS. IJ3DPTDI. August 2024;8(2):173-184. doi:10.46519/ij3dptdi.1449545
Chicago Şenaysoy, Safa, and Hüseyin Lekesiz. “EVALUATION OF MECHANOBIOLOGICAL POTENTIAL OF 3D-PRINTED PLA BONE TISSUE SCAFFOLDS WITH DIFFERENT PORE ARCHITECTURES AND POROSITY RATIOS”. International Journal of 3D Printing Technologies and Digital Industry 8, no. 2 (August 2024): 173-84. https://doi.org/10.46519/ij3dptdi.1449545.
EndNote Şenaysoy S, Lekesiz H (August 1, 2024) EVALUATION OF MECHANOBIOLOGICAL POTENTIAL OF 3D-PRINTED PLA BONE TISSUE SCAFFOLDS WITH DIFFERENT PORE ARCHITECTURES AND POROSITY RATIOS. International Journal of 3D Printing Technologies and Digital Industry 8 2 173–184.
IEEE S. Şenaysoy and H. Lekesiz, “EVALUATION OF MECHANOBIOLOGICAL POTENTIAL OF 3D-PRINTED PLA BONE TISSUE SCAFFOLDS WITH DIFFERENT PORE ARCHITECTURES AND POROSITY RATIOS”, IJ3DPTDI, vol. 8, no. 2, pp. 173–184, 2024, doi: 10.46519/ij3dptdi.1449545.
ISNAD Şenaysoy, Safa - Lekesiz, Hüseyin. “EVALUATION OF MECHANOBIOLOGICAL POTENTIAL OF 3D-PRINTED PLA BONE TISSUE SCAFFOLDS WITH DIFFERENT PORE ARCHITECTURES AND POROSITY RATIOS”. International Journal of 3D Printing Technologies and Digital Industry 8/2 (August 2024), 173-184. https://doi.org/10.46519/ij3dptdi.1449545.
JAMA Şenaysoy S, Lekesiz H. EVALUATION OF MECHANOBIOLOGICAL POTENTIAL OF 3D-PRINTED PLA BONE TISSUE SCAFFOLDS WITH DIFFERENT PORE ARCHITECTURES AND POROSITY RATIOS. IJ3DPTDI. 2024;8:173–184.
MLA Şenaysoy, Safa and Hüseyin Lekesiz. “EVALUATION OF MECHANOBIOLOGICAL POTENTIAL OF 3D-PRINTED PLA BONE TISSUE SCAFFOLDS WITH DIFFERENT PORE ARCHITECTURES AND POROSITY RATIOS”. International Journal of 3D Printing Technologies and Digital Industry, vol. 8, no. 2, 2024, pp. 173-84, doi:10.46519/ij3dptdi.1449545.
Vancouver Şenaysoy S, Lekesiz H. EVALUATION OF MECHANOBIOLOGICAL POTENTIAL OF 3D-PRINTED PLA BONE TISSUE SCAFFOLDS WITH DIFFERENT PORE ARCHITECTURES AND POROSITY RATIOS. IJ3DPTDI. 2024;8(2):173-84.

download

International Journal of 3D Printing Technologies and Digital Industry is lisenced under Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı