Safe land system architecture design of multi-rotors considering engine failure
Year 2022,
, 7 - 19, 30.04.2022
Seyed Yaser Nabavi Chashmi
,
Davood Asadi
,
Karim Ahmadi Dastgerdi
Abstract
There is growing interest to use drones for application like delivery services, air taxi, surveillance, and inspection to reduce operational time and cost and increase the performance and functionalities. However, there are some risks related to using this technology one of them is the hazard to the humans and assets in the case of an emergency scenario like motor failure. The current technologies suggest to land as soon as possible in such these scenarios, however finding and selecting a suitable landing area considering the capabilities of the faulty drone and controlling the drone towards the selected point is a problem which requires provisions during the design process of the drone. The situations get more complex considering that the vehicle should be able to adopt itself by its time varying environment. In this paper the system approach is used to break the safety requirements to functional and physical requirements and based on these requirement analyses, the functional and physical architectures of the drone are designed. The proposed design suggests that the drones aggregate their perception about the environment to maximize the safety of people and assets through a special databank called potential landmark databank.
Supporting Institution
Scientific and Technological Research Council of Turkey (TÜBİTAK) under 3501 programs
Thanks
Adana Science and Technology University - Department of Aerospace Engineering
Scientific and Technological Research Council of Turkey (TÜBİTAK)
References
- Asadi, D., Ahmadi, K., and Nabavi, S. Y., “Fault-tolerant Trajectory Tracking Control of a Quadcopter in Presence of a Motor Fault,” Int. J. Aeronaut. Sp. Sci., 2021, doi: 10.1007/s42405-021-00412-9.
- Ahmadi, K., Asadi, D., and Pazooki, F., “Nonlinear L1 adaptive control of an airplane with structural damage,” Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng., 233 (1), 2019, doi: 10.1177/0954410017730088.
- Asadi, D., Ahmadi, K., Nonlinear robust adaptive control of an airplane with structural damage, Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 234 (2020) 2076–2088. https://doi.org/10.1177/0954410020926618.
- Asadi, D. and Bagherzadeh, S. A., “Nonlinear adaptive sliding mode tracking control of an airplane with wing damage,” Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng., 232 (8), pp. 1405–1420, Feb. 2017, doi: 10.1177/0954410017690546.
- Bagherzadeh, S. A., Asadi, D., Detection of the ice assertion on aircraft using empirical mode decomposition enhanced by multi-objective optimization, Mechanical Systems and Signal Processing, Vol. 88, 2017, p. 9-24.
- Asadi, D., “Partial Engine Fault Detection and Control of a Quadrotor Considering Model Uncertainty,” Turkish J. Eng., 6 (2), pp. 106–117, 2021, doi: 10.31127/tuje.843607.
- Asadi, D., Sabzehparvar, M., Atkins, E. M., and H. A. Talebi, “Damaged airplane trajectory planning based on flight envelope and motion primitives,” J. Aircr., 51 (6), 2014, doi: 10.2514/1.C032422.
- Asadi, D., Sabzehparvar, M., Atkins, E. M., and Talebi, H. A., “Damaged Airplane Trajectory Planning Based on Flight Envelope and Motion Primitives,” J. Aircr., 51 (6), pp. 1740–1757, Oct. 2014, doi: 10.2514/1.C032422.
- Asadi, D., Sabzehparvar, M., and Talebi, H. A., “Damaged airplane flight envelope and stability evaluation,” Aircr. Eng. Aerosp. Technol., 85 (3), 2013, doi: 10.1108/00022661311313623.
- Asadi, D. and Atkins, E. M., “Multi-Objective Weight Optimization for Trajectory Planning of an Airplane with Structural Damage,” J. Intell. Robot. Syst. Theory Appl., 91 (3), 2018, doi: 10.1007/s10846-017-0753-9.
- Mejias, L., Fitzgerald, D., Eng, P., and Liu, X., “Forced Landing Technologies for Unmanned Aerial Vehicles: Towards Safer Operations,” Aer. Veh., 2009, doi: 10.5772/6481.
- Cesetti, A., Fronton, E. i, Mancini, A., Zingaretti, P., and Longhi, S., “A Vision-based guidance system for UAV navigation and safe landing using natural landmarks,” J. Intell. Robot. Syst. Theory Appl., 57 (1), pp. 233–257, 2010, doi: 10.1007/s10846-009-9373-3.
- Turan, V., Avşar, E., Asadi, D., Aydin, E.A., Image Processing Based Autonomous Landing Zone Detection for a Multi-Rotor Drone in Emergency Situations, Turkish J. Eng. 5 (2021). https://doi.org/10.31127/tuje.744954.
- Di Donato, P. F. A. and Atkins, E. M., “Evaluating risk to people and property for aircraft emergency landing planning,” J. Aerosp. Inf. Syst., 14 (5), pp. 259–278, 2017, doi: 10.2514/1.I010513.
Güvenli kara sistemi mimari tasarimi motor arizalarini dikkate alarak çok rotorlu mimari tasarimi
Year 2022,
, 7 - 19, 30.04.2022
Seyed Yaser Nabavi Chashmi
,
Davood Asadi
,
Karim Ahmadi Dastgerdi
Abstract
Operasyonel süreyi ve maliyeti azaltmak ve performans ve işlevleri artırmak için teslimat hizmetleri, hava taksi, gözetim ve denetim gibi uygulamalar için dronları kullanmaya artan bir ilgi var. Ancak, bu teknolojinin kullanılmasıyla ilgili bazı riskler vardır, bunlardan biri motor arızası gibi bir acil durum senaryosunda insanlar ve varlıklar için tehlikedir. Mevcut teknolojiler bu tür senaryolarda en kısa sürede inmeyi önermektedir ancak hatalı drone'un yetenekleri göz önünde bulundurularak uygun bir iniş alanı bulunması ve seçilmesi ve drone'nun seçilen noktaya doğru kontrol edilmesi, uçağın tasarım sürecinde önlem alınması gereken bir sorundur. Uçan göz. Aracın zamana göre değişen ortamına kendini adapte edebilmesi gerektiği düşünüldüğünde durumlar daha da karmaşıklaşıyor. Bu yazıda, güvenlik gerekliliklerini işlevsel ve fiziksel gereksinimlere ayırmak için sistem yaklaşımı kullanılmış ve bu gereksinim analizlerine dayalı olarak drone'nun işlevsel ve fiziksel mimarileri tasarlanmıştır. Önerilen tasarım, dronların, potansiyel arazi işareti veri bankası adı verilen özel bir veri bankası aracılığıyla insanların ve varlıkların güvenliğini en üst düzeye çıkarmak için çevre hakkındaki algılarını birleştirmelerini önermektedir.
References
- Asadi, D., Ahmadi, K., and Nabavi, S. Y., “Fault-tolerant Trajectory Tracking Control of a Quadcopter in Presence of a Motor Fault,” Int. J. Aeronaut. Sp. Sci., 2021, doi: 10.1007/s42405-021-00412-9.
- Ahmadi, K., Asadi, D., and Pazooki, F., “Nonlinear L1 adaptive control of an airplane with structural damage,” Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng., 233 (1), 2019, doi: 10.1177/0954410017730088.
- Asadi, D., Ahmadi, K., Nonlinear robust adaptive control of an airplane with structural damage, Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 234 (2020) 2076–2088. https://doi.org/10.1177/0954410020926618.
- Asadi, D. and Bagherzadeh, S. A., “Nonlinear adaptive sliding mode tracking control of an airplane with wing damage,” Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng., 232 (8), pp. 1405–1420, Feb. 2017, doi: 10.1177/0954410017690546.
- Bagherzadeh, S. A., Asadi, D., Detection of the ice assertion on aircraft using empirical mode decomposition enhanced by multi-objective optimization, Mechanical Systems and Signal Processing, Vol. 88, 2017, p. 9-24.
- Asadi, D., “Partial Engine Fault Detection and Control of a Quadrotor Considering Model Uncertainty,” Turkish J. Eng., 6 (2), pp. 106–117, 2021, doi: 10.31127/tuje.843607.
- Asadi, D., Sabzehparvar, M., Atkins, E. M., and H. A. Talebi, “Damaged airplane trajectory planning based on flight envelope and motion primitives,” J. Aircr., 51 (6), 2014, doi: 10.2514/1.C032422.
- Asadi, D., Sabzehparvar, M., Atkins, E. M., and Talebi, H. A., “Damaged Airplane Trajectory Planning Based on Flight Envelope and Motion Primitives,” J. Aircr., 51 (6), pp. 1740–1757, Oct. 2014, doi: 10.2514/1.C032422.
- Asadi, D., Sabzehparvar, M., and Talebi, H. A., “Damaged airplane flight envelope and stability evaluation,” Aircr. Eng. Aerosp. Technol., 85 (3), 2013, doi: 10.1108/00022661311313623.
- Asadi, D. and Atkins, E. M., “Multi-Objective Weight Optimization for Trajectory Planning of an Airplane with Structural Damage,” J. Intell. Robot. Syst. Theory Appl., 91 (3), 2018, doi: 10.1007/s10846-017-0753-9.
- Mejias, L., Fitzgerald, D., Eng, P., and Liu, X., “Forced Landing Technologies for Unmanned Aerial Vehicles: Towards Safer Operations,” Aer. Veh., 2009, doi: 10.5772/6481.
- Cesetti, A., Fronton, E. i, Mancini, A., Zingaretti, P., and Longhi, S., “A Vision-based guidance system for UAV navigation and safe landing using natural landmarks,” J. Intell. Robot. Syst. Theory Appl., 57 (1), pp. 233–257, 2010, doi: 10.1007/s10846-009-9373-3.
- Turan, V., Avşar, E., Asadi, D., Aydin, E.A., Image Processing Based Autonomous Landing Zone Detection for a Multi-Rotor Drone in Emergency Situations, Turkish J. Eng. 5 (2021). https://doi.org/10.31127/tuje.744954.
- Di Donato, P. F. A. and Atkins, E. M., “Evaluating risk to people and property for aircraft emergency landing planning,” J. Aerosp. Inf. Syst., 14 (5), pp. 259–278, 2017, doi: 10.2514/1.I010513.