Research Article
BibTex RIS Cite

Aerodynamic efficiency analysis of variable morphing wings

Year 2022, , 71 - 86, 01.09.2022
https://doi.org/10.55212/ijaa.1088399

Abstract

In this paper, variable wing and/or winglet concepts are investigated. The impetus for the work was to identify and optimize wing and winglets to enhance the aerodynamic efficiency of a morphing aircraft. The analysis is based on changing sweep angle and wing-tip twist together with cant angle morphing (Γ = 0° - 45° φ = −10°- 10° and Λ = 0° - 30°). A variety of cases are examined through an aerodynamic analysis tool (VLM) comparing with baseline sweep wing configuration. As a result, significant improvements in flight characteristics are observed by adapting the required angle to receive optimum performance benefits.

References

  • McRuer, D. and Graham, D. 2004. Flight Control Century: Triumphs of the Systems Approach, J. Guid. Control. Dyn., vol. 27, no. 2, pp. 161–173, doi: 10.2514/1.4586.
  • McGowan, A., Vicroy, D., Busan, R. C. and Hahn, A. S. 2009. Perspectives on Highly Adaptive or Morphing Aircraft, RTO Appl. Veh. Technol. Panel Symp., pp. 1-1-1–14.
  • Barbarino, S., Bilgen, O., Ajaj, R., M. Friswell, M. I. and Inman, D. J. 2011. A Review of Morphing Aircraft, J. Intell. Mater. Syst. Struct., vol. 22, no. 9, pp. 823–877, Aug., doi: 10.1177/1045389X11414084.
  • Weisshaar, T. A. 2013. Morphing Aircraft Systems: Historical Perspectives and Future Challenges, J. Aircr., vol. 50, no. 2, pp. 337–353, doi: 10.2514/1.C031456.
  • Jha, A. K. and Kudva, J. N. 2004. Morphing Aircraft Concepts, Classifications, and Challanges, Smart Structures and Materials, July, vol. 5388, San Diego, 213–224, doi: 10.1117/12.544212.
  • Sofla, A. Y. N., Meguid, S. A., Tan, K. T. and Yeo, W. K. 2010. Shape morphing of aircraft wing: Status and challenges, Mater. Des., vol. 31, no. 3, March 1284–1292, doi: 10.1016/j.matdes.2009.09.011.
  • Ajaj, R. M., Beaverstock, C. S. and Friswell, M. I. 2017. Morphing aircraft: The need for a new design philosophy, Aerosp. Sci. Technol., vol. 49, no. December, 154–166, 2015, doi: 10.1016/j.ast.2015.11.039.
  • Thill, C., Etches, J., Bond, I., Potter, K., & Weaver, P. 2008. Morphing skins. The Aeronautical Journal (1968), 112(1129), 117-139. doi:10.1017/S0001924000002062
  • Bubert, E. A. 2009. "Highly Extensible Skin for a Variable Wing-Span Morphing Aircraft Utilizing Pneumatic Artificial Muscle". Master thesis, The University of Maryland, College Park, Faculty of the Graduate School,Maryland, USA, 70-105.
  • Perkins, D. A. 2005. Adaptive wing structures, Proc. SPIE, vol. 5762, pp. 132–142, [Online]. Available: http://link.aip.org/link/?PSI/5762/132/1&Agg=doi.
  • Gandhi, F. and Anusonti-Inthra, P. 2008. Skin design studies for variable camber morphing airfoils, Smart Mater. Struct., vol. 17, no. 1, p. 015025, doi: 10.1088/0964-1726/17/01/015025.
  • Hinshaw, T. 2009. "Analysis and Design of a Morphing Wing Tip using Multicellular Flexible Matrix Composite Adaptive Skins". Master thesis, Virginia Polytechnic Institute and State University, Virginia, USA, 20-85.
  • Neal, & Anthony, D. 2006. "Design, Development, and Analysis of a Morphing Aircraft Model for Wind Tunnel Experimentation". Master thesis, Virginia Polytechnic Institute and State University, Virginia, USA, 17-107.
  • Blondeau, J., Richeson, J., Pines, D. J. and Norfolk, A. 2003. Design, development and testing of a morphing aspect ratio wing using an inflatable telescopic spar, 44th AIAA / ASME / ASCE / AHS Structures , Structural,” Aerosp. Eng., vol. 1718, no. April, pp. 1–11.
  • Joo. J. J. 2012. Optimal actuator location within a morphing wing scissor mechanism configuration, Proc. SPIE, vol. 6166, no. May, pp. 616603-616603–12, [Online]. Available: http://link.aip.org/link/PSISDG/v6166/i1/p616603/s1&Agg=doi.
  • Dunbar, B. and Y. G., NASA Armstrong Fact Sheet: X-5 Research Aircraft, 2014. https://www.nasa.gov/centers/armstrong/news/FactSheets/FS-081-DFRC.html.(13 March 2022)
  • Gatto, A., Mattioni, F. and Friswell, M. I. 2009. Experimental Investigation of Bistable Winglets to Enhance Aircraft Wing Lift Takeoff Capability, J. Aircr., vol. 46, no. 2, pp. 647–655, doi: 10.2514/1.39614.
  • Kaygan, E. and Ulusoy, C. 2018. Effectiveness of Twist Morphing Wing on Aerodynamic Performance and Control of an Aircraft, J. Aviat., vol. 2, no. 2, 77–86, doi: 10.30518/jav.482507.
  • Cooper, J. E., Chekkal, I., Cheung, R. C. M., Wales, C., Allen, N. J., Lawson, S., Peace, A. J., Cook, R., Standen, P., Hancock S. D. and Carossa, G. M. 2015. Design of a morphing wingtip, J. Aircr., vol. 52, no. 5, pp. 1394–140, doi: 10.2514/1.C032861.
  • Kaygan, E. 2020. Aerodynamic Analysis of Morphing Winglets for Improved Commercial Aircraft Performance, J Aviat, vol. 4, no. 1, pp. 31–44, [Online]. Available: https://doi.org/10.30518/jav.716194.
  • Bourdin, P., Gatto, A. and Friswell, M. I. 2010. Performing co-ordinated turns with articulated wing-tips as multi-axis control effectors, Aeronaut. J., vol. 114, no. 1151, pp. 35–47.
  • Kaygan, E. and Gatto, A. 2014. Investigation of Adaptable Winglets for Improved UAV Control and Performance. Int. J. Aerosp. Mech. Eng.,vol. 8, no. 7, pp. 1281–1286.
  • Kaygan, E. and Gatto, A. 2016. Development of an Active Morphing Wing With Adaptive Skin for Enhanced Aircraft Control and Performance. Greener Aviation 2016, October.
  • Kaygan, E. and Gatto, A. 2018. Structural Analysis of an Active Morphing Wing for Enhancing Unmanned Aerial Vehicle Performance. Int. J. Aerosp. Mech. Eng., vol. 12, no. 10, pp. 948–955.
  • Gatto, A., Bourdin, P. and Friswell, M. I. 2010. Experimental Investigation into Articulated Winglet Effects on Flying Wing Surface Pressure Aerodynamics, J. Aircr., vol. 47, no. 5, pp. 1811–1815, doi: 10.2514/1.C000251.
  • Woods, B. K., Bilgen, O. and Friswell, M. I. 2014. Wind tunnel testing of the fish bone active camber morphing concept, J. Intell. Mater. Syst. Struct., vol. 25, no. 7, pp. 772–785, Feb., doi: 10.1177/1045389X14521700.
  • Hepperle, M. 2011. JAVAFOIL user’s guide, 2011. https://www.mh-aerotools.de/airfoils/java/JavaFoil Users Guide.pdf. (23 July 2021.)
  • Drela, M. 1989. XFOIL: An Analysis and Design System for Low Reynolds Number Airfoils. Lecture Notes in Engineering, vol 54. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84010-4_1
  • Saffman, P. G. Vortex Dynamics, Cambridge Univ. Press, United Kingdom, 1992.
  • Anderson, J. D. Fundamentals of Aerodynamics, Sixth. McGraw- Hill Education, USA, 2017.
  • Gudmundsson, S. 2014. The Anatomy of the Wing. General Aviation Aircraft Design, pp. 299-399, doi: 10.1016/B978-0-12-397308-5.00009-X.
  • Page, R. K. 1968. Aircraft with Variable‐Sweep Wings. Aircr. Eng. Aerosp. Technol., vol. 37, no. 10, pp. 295–299, doi: 10.1108/eb034081.
  • Mulyanto, T., Lutfhi, M., Nurhakim, I. and Sasongko, R. A. 2010. Development of A Morphing Flying Platform for Adaptive Cotrol System Study. ICAS2010, pp. 1–5.
  • Kaygan, E. and Gatto, A. 2014. Investigation of Adaptable Winglets for Improved UAV Control and Performance. Int. J. Mech. Aerospace, Ind. Mechatronics Eng., vol. 8, no. 7, pp. 1281–1286.
  • Phillips, W. F., Alley, N. R. and Goodrich, W. D. 2004. Lifting-Line Analysis of Roll Control and Variable Twist. J. Aircr., vol. 41, no. 5, pp. 1169–1176, doi: 10.2514/1.3846.
  • Guerrero, J. E., Sanguineti, M. and Wittkowski, K. 2020. Variable cant angle winglets for improvement of aircraft flight performance. Meccanica, vol. 55, no. 10, pp. 1917–1947, doi: 10.1007/s11012-020-01230-1.
  • Bourdin, P., Gatto, A. and Friswell, M. I. 2008. Aircraft Control via Variable Cant-Angle Winglets. Journal of Aircraft, vol. 45, no. 2. pp. 414–423.
  • Gatto, A., Bourdin, P. and Friswell, M. I. 2012. Experimental investigation into the control and load alleviation capabilities of articulated winglets. Int. J. Aerosp. Eng., vol. 1, doi: 10.1155/2012/789501.

Aerodynamic efficiency analysis of variable morphing wings

Year 2022, , 71 - 86, 01.09.2022
https://doi.org/10.55212/ijaa.1088399

Abstract

Bu makalede değişken kanat ve/veya kanatçık kavramları incelenmiştir. Çalışmanın amacı, morphing uçaklarının aerodinamik verimliliğini artırmak için kanatları ve kanatçıkların değişim açılarını belirlemek ve optimize etmekti. Analiz, değişen tarama açısına ve kanat ucu bükümüne ve ayrıca eğim açısı biçim değiştirmesine (Γ = 0° - 45° φ = -10°- 10° ve Λ = 0° - 30°) dayanmaktadır. VLM analiz yöntemi kullanılarak farklı kanat varyasyonları denenmiştir. Sonuç olarak, optimum performans faydalarını elde etmek için gerekli açı uyarlanarak uçuş özelliklerinde önemli gelişmeler gözlemlenmiştir

References

  • McRuer, D. and Graham, D. 2004. Flight Control Century: Triumphs of the Systems Approach, J. Guid. Control. Dyn., vol. 27, no. 2, pp. 161–173, doi: 10.2514/1.4586.
  • McGowan, A., Vicroy, D., Busan, R. C. and Hahn, A. S. 2009. Perspectives on Highly Adaptive or Morphing Aircraft, RTO Appl. Veh. Technol. Panel Symp., pp. 1-1-1–14.
  • Barbarino, S., Bilgen, O., Ajaj, R., M. Friswell, M. I. and Inman, D. J. 2011. A Review of Morphing Aircraft, J. Intell. Mater. Syst. Struct., vol. 22, no. 9, pp. 823–877, Aug., doi: 10.1177/1045389X11414084.
  • Weisshaar, T. A. 2013. Morphing Aircraft Systems: Historical Perspectives and Future Challenges, J. Aircr., vol. 50, no. 2, pp. 337–353, doi: 10.2514/1.C031456.
  • Jha, A. K. and Kudva, J. N. 2004. Morphing Aircraft Concepts, Classifications, and Challanges, Smart Structures and Materials, July, vol. 5388, San Diego, 213–224, doi: 10.1117/12.544212.
  • Sofla, A. Y. N., Meguid, S. A., Tan, K. T. and Yeo, W. K. 2010. Shape morphing of aircraft wing: Status and challenges, Mater. Des., vol. 31, no. 3, March 1284–1292, doi: 10.1016/j.matdes.2009.09.011.
  • Ajaj, R. M., Beaverstock, C. S. and Friswell, M. I. 2017. Morphing aircraft: The need for a new design philosophy, Aerosp. Sci. Technol., vol. 49, no. December, 154–166, 2015, doi: 10.1016/j.ast.2015.11.039.
  • Thill, C., Etches, J., Bond, I., Potter, K., & Weaver, P. 2008. Morphing skins. The Aeronautical Journal (1968), 112(1129), 117-139. doi:10.1017/S0001924000002062
  • Bubert, E. A. 2009. "Highly Extensible Skin for a Variable Wing-Span Morphing Aircraft Utilizing Pneumatic Artificial Muscle". Master thesis, The University of Maryland, College Park, Faculty of the Graduate School,Maryland, USA, 70-105.
  • Perkins, D. A. 2005. Adaptive wing structures, Proc. SPIE, vol. 5762, pp. 132–142, [Online]. Available: http://link.aip.org/link/?PSI/5762/132/1&Agg=doi.
  • Gandhi, F. and Anusonti-Inthra, P. 2008. Skin design studies for variable camber morphing airfoils, Smart Mater. Struct., vol. 17, no. 1, p. 015025, doi: 10.1088/0964-1726/17/01/015025.
  • Hinshaw, T. 2009. "Analysis and Design of a Morphing Wing Tip using Multicellular Flexible Matrix Composite Adaptive Skins". Master thesis, Virginia Polytechnic Institute and State University, Virginia, USA, 20-85.
  • Neal, & Anthony, D. 2006. "Design, Development, and Analysis of a Morphing Aircraft Model for Wind Tunnel Experimentation". Master thesis, Virginia Polytechnic Institute and State University, Virginia, USA, 17-107.
  • Blondeau, J., Richeson, J., Pines, D. J. and Norfolk, A. 2003. Design, development and testing of a morphing aspect ratio wing using an inflatable telescopic spar, 44th AIAA / ASME / ASCE / AHS Structures , Structural,” Aerosp. Eng., vol. 1718, no. April, pp. 1–11.
  • Joo. J. J. 2012. Optimal actuator location within a morphing wing scissor mechanism configuration, Proc. SPIE, vol. 6166, no. May, pp. 616603-616603–12, [Online]. Available: http://link.aip.org/link/PSISDG/v6166/i1/p616603/s1&Agg=doi.
  • Dunbar, B. and Y. G., NASA Armstrong Fact Sheet: X-5 Research Aircraft, 2014. https://www.nasa.gov/centers/armstrong/news/FactSheets/FS-081-DFRC.html.(13 March 2022)
  • Gatto, A., Mattioni, F. and Friswell, M. I. 2009. Experimental Investigation of Bistable Winglets to Enhance Aircraft Wing Lift Takeoff Capability, J. Aircr., vol. 46, no. 2, pp. 647–655, doi: 10.2514/1.39614.
  • Kaygan, E. and Ulusoy, C. 2018. Effectiveness of Twist Morphing Wing on Aerodynamic Performance and Control of an Aircraft, J. Aviat., vol. 2, no. 2, 77–86, doi: 10.30518/jav.482507.
  • Cooper, J. E., Chekkal, I., Cheung, R. C. M., Wales, C., Allen, N. J., Lawson, S., Peace, A. J., Cook, R., Standen, P., Hancock S. D. and Carossa, G. M. 2015. Design of a morphing wingtip, J. Aircr., vol. 52, no. 5, pp. 1394–140, doi: 10.2514/1.C032861.
  • Kaygan, E. 2020. Aerodynamic Analysis of Morphing Winglets for Improved Commercial Aircraft Performance, J Aviat, vol. 4, no. 1, pp. 31–44, [Online]. Available: https://doi.org/10.30518/jav.716194.
  • Bourdin, P., Gatto, A. and Friswell, M. I. 2010. Performing co-ordinated turns with articulated wing-tips as multi-axis control effectors, Aeronaut. J., vol. 114, no. 1151, pp. 35–47.
  • Kaygan, E. and Gatto, A. 2014. Investigation of Adaptable Winglets for Improved UAV Control and Performance. Int. J. Aerosp. Mech. Eng.,vol. 8, no. 7, pp. 1281–1286.
  • Kaygan, E. and Gatto, A. 2016. Development of an Active Morphing Wing With Adaptive Skin for Enhanced Aircraft Control and Performance. Greener Aviation 2016, October.
  • Kaygan, E. and Gatto, A. 2018. Structural Analysis of an Active Morphing Wing for Enhancing Unmanned Aerial Vehicle Performance. Int. J. Aerosp. Mech. Eng., vol. 12, no. 10, pp. 948–955.
  • Gatto, A., Bourdin, P. and Friswell, M. I. 2010. Experimental Investigation into Articulated Winglet Effects on Flying Wing Surface Pressure Aerodynamics, J. Aircr., vol. 47, no. 5, pp. 1811–1815, doi: 10.2514/1.C000251.
  • Woods, B. K., Bilgen, O. and Friswell, M. I. 2014. Wind tunnel testing of the fish bone active camber morphing concept, J. Intell. Mater. Syst. Struct., vol. 25, no. 7, pp. 772–785, Feb., doi: 10.1177/1045389X14521700.
  • Hepperle, M. 2011. JAVAFOIL user’s guide, 2011. https://www.mh-aerotools.de/airfoils/java/JavaFoil Users Guide.pdf. (23 July 2021.)
  • Drela, M. 1989. XFOIL: An Analysis and Design System for Low Reynolds Number Airfoils. Lecture Notes in Engineering, vol 54. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84010-4_1
  • Saffman, P. G. Vortex Dynamics, Cambridge Univ. Press, United Kingdom, 1992.
  • Anderson, J. D. Fundamentals of Aerodynamics, Sixth. McGraw- Hill Education, USA, 2017.
  • Gudmundsson, S. 2014. The Anatomy of the Wing. General Aviation Aircraft Design, pp. 299-399, doi: 10.1016/B978-0-12-397308-5.00009-X.
  • Page, R. K. 1968. Aircraft with Variable‐Sweep Wings. Aircr. Eng. Aerosp. Technol., vol. 37, no. 10, pp. 295–299, doi: 10.1108/eb034081.
  • Mulyanto, T., Lutfhi, M., Nurhakim, I. and Sasongko, R. A. 2010. Development of A Morphing Flying Platform for Adaptive Cotrol System Study. ICAS2010, pp. 1–5.
  • Kaygan, E. and Gatto, A. 2014. Investigation of Adaptable Winglets for Improved UAV Control and Performance. Int. J. Mech. Aerospace, Ind. Mechatronics Eng., vol. 8, no. 7, pp. 1281–1286.
  • Phillips, W. F., Alley, N. R. and Goodrich, W. D. 2004. Lifting-Line Analysis of Roll Control and Variable Twist. J. Aircr., vol. 41, no. 5, pp. 1169–1176, doi: 10.2514/1.3846.
  • Guerrero, J. E., Sanguineti, M. and Wittkowski, K. 2020. Variable cant angle winglets for improvement of aircraft flight performance. Meccanica, vol. 55, no. 10, pp. 1917–1947, doi: 10.1007/s11012-020-01230-1.
  • Bourdin, P., Gatto, A. and Friswell, M. I. 2008. Aircraft Control via Variable Cant-Angle Winglets. Journal of Aircraft, vol. 45, no. 2. pp. 414–423.
  • Gatto, A., Bourdin, P. and Friswell, M. I. 2012. Experimental investigation into the control and load alleviation capabilities of articulated winglets. Int. J. Aerosp. Eng., vol. 1, doi: 10.1155/2012/789501.
There are 38 citations in total.

Details

Primary Language English
Subjects Aerospace Engineering
Journal Section Research Articles
Authors

Erdogan Kaygan 0000-0003-3319-3657

Tugce Koroglu 0000-0001-6818-7682

Melisa Basak 0000-0002-8028-727X

Publication Date September 1, 2022
Submission Date March 16, 2022
Published in Issue Year 2022

Cite

APA Kaygan, E., Koroglu, T., & Basak, M. (2022). Aerodynamic efficiency analysis of variable morphing wings. International Journal of Aeronautics and Astronautics, 3(2), 71-86. https://doi.org/10.55212/ijaa.1088399
AMA Kaygan E, Koroglu T, Basak M. Aerodynamic efficiency analysis of variable morphing wings. International Journal of Aeronautics and Astronautics. September 2022;3(2):71-86. doi:10.55212/ijaa.1088399
Chicago Kaygan, Erdogan, Tugce Koroglu, and Melisa Basak. “Aerodynamic Efficiency Analysis of Variable Morphing Wings”. International Journal of Aeronautics and Astronautics 3, no. 2 (September 2022): 71-86. https://doi.org/10.55212/ijaa.1088399.
EndNote Kaygan E, Koroglu T, Basak M (September 1, 2022) Aerodynamic efficiency analysis of variable morphing wings. International Journal of Aeronautics and Astronautics 3 2 71–86.
IEEE E. Kaygan, T. Koroglu, and M. Basak, “Aerodynamic efficiency analysis of variable morphing wings”, International Journal of Aeronautics and Astronautics, vol. 3, no. 2, pp. 71–86, 2022, doi: 10.55212/ijaa.1088399.
ISNAD Kaygan, Erdogan et al. “Aerodynamic Efficiency Analysis of Variable Morphing Wings”. International Journal of Aeronautics and Astronautics 3/2 (September 2022), 71-86. https://doi.org/10.55212/ijaa.1088399.
JAMA Kaygan E, Koroglu T, Basak M. Aerodynamic efficiency analysis of variable morphing wings. International Journal of Aeronautics and Astronautics. 2022;3:71–86.
MLA Kaygan, Erdogan et al. “Aerodynamic Efficiency Analysis of Variable Morphing Wings”. International Journal of Aeronautics and Astronautics, vol. 3, no. 2, 2022, pp. 71-86, doi:10.55212/ijaa.1088399.
Vancouver Kaygan E, Koroglu T, Basak M. Aerodynamic efficiency analysis of variable morphing wings. International Journal of Aeronautics and Astronautics. 2022;3(2):71-86.

International Journal of Aeronautics and Astronautics is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY NC).