Review Article
BibTex RIS Cite

Thermoplastic polyurethane composites for electromagnetic interference shielding

Year 2024, , 23 - 36, 30.06.2024
https://doi.org/10.55212/ijaa.1479997

Abstract

Electromagnetic pollution has been a negative effect of the interest in electronic devices with advancing technology. Therefore, electromagnetic interference (EMI) shielding materials have become important. Although metals are mostly preferred due to their conductive properties, due to their disadvantages such as high density and low corrosion resistance, interest in lightweight, high strength and high corrosion resistance polymers composites has increased. Thermoplastic composites are used in a wide range of applications due to their light weight, easy processing and recyclability.
Based on the principle of electromagnetic interference shielding, many complex factors have been found to have an influential role in achieving the desired shielding efficiency for conductive polymer composites. These include the type, morphology, amount and dispersion of nanoparticles, which greatly affect the conductive properties of conductive polymer composites. Surface conductive layer or high-content metal-filled products provide good electromagnetic interference shielding, mainly through reflection, but they can often lead to high reflection, resulting in strong secondary electromagnetic radiation. Thus, reflection-based EMI shielding can only prevent interference by shielding material, but cannot effectively control and eliminate lost electromagnetic waves. Therefore, eliminating secondary electromagnetic wave pollution can be achieved by adding magnetic nanoparticles and carbon-based (such as carbon fiber) hybrid materials to support the absorption property of conductive polymer composites. Here, magnetic nanoparticles provide magnetic loss while carbon nanofillers contribute to dielectric loss, which can more effectively dissipate electromagnetic waves through absorption. Another important factor affecting the shielding efficiency is the influence of the structural properties of the polymer composites (bulk or 3D porous structure).
Polyurethane thermoplastics are important in terms of EMI shielding because they are flexible, lightweight, economical and can be produced with pore structures in three dimensions. By adding carbon-based materials such as graphene, carbon black, carbon fibre to the polymer matrix, mechanical, electrical conductivity, and thermal properties are improved. Therefore, carbon-based materials can be considered as a potentially effective option for blocking electromagnetic interference in electronic devices.

Thanks

Bu çalışma Fırat Üniversitesi Fen Bilimleri Enstitüsü Havacılık Bilim ve Teknolojileri yüksek lisans öğrencisi Ümmühan KAYA’nin yüksek lisans tezinden üretilmiştir.

References

  • Viskadourakis, Z., Vasilopoulos, K., Economou. E., Soukoulis, C.M. and Kenanakis, G. 2017. Electromagnetic Shielding Effectiveness of 3D Printed Polymer Composites, Applied Physics A, 123, 1-7.
  • Geetha, S., Satheesh Kumar, K., Rao, C.R., Vijayan, M. and Trivedi D. 2009. Emi Shielding: Methods And Materials-A Review. Journal of Applied Polymer Science, 112(4), 2073-2086.
  • Rea, W.J., Pan, Y., Fenyves, E.J., Sujisawa, I., Suyama, H. And Samadi, N. 1991. Electromagnetic Field Sensitivity. Journal of Bioelectricity, 10(1-2), 241-256.
  • Kılıç B. 2010. Elektromanyetik Test Altyapıları Ve Montaj Yöntemleri, UEKAE Dergisi 2(3), 50-59.
  • Wang, H., Liu, M., Li, S., Zheng, X. and Zhou, X. 2022. A Self-Healing and Flexible Ag@Carbon Fiber/Polyurethane Composite Based on Disulfide Bonds and Application in Electromagnetic İnterference Shielding. Colloids and Surfaces A: Physicochemical and Engineering Aspects 646, 128956.
  • Kumar, K. S., Rengaraj, R., Venkatakrishnan, G. R. and Chandramohan, A. 2021, Polymeric materials for electromagnetic shielding-A review. Materials Today: Proceedings, 47, 4925-4928.
  • Bhattacharjee, Y., Biswas, S. and Bose, S. 2020, Thermoplastic Polymer Composites For EMI Shielding Applications. Processing, Properties and Current Trends, 73-99.
  • Gogoi, J.P. and Borah, M. 2016, Biopolymer Composites For Electromagnetic Interference Shielding. Biopolymer Composites In Electronics, 255-275.
  • Chung, D.D. 2001, Electromagnetic interference Shielding Effectiveness of Carbon Materials. Carbon, 39(2), 279–285.
  • Kumar, R., Sahoo, S., Joanni, E., Singh, R.K., Tan, W.K., Kar, K.K. and Matsuda, A. 2021, Recent Progress on Carbon-Based Composite Materials for Microwave Electromagnetic Interference Shielding. Carbon, 177, 304-331.
  • Singh, A.K., Shishkin, A., Koppel, T. and Gupta, N. A. 2018, Review of Porous Lightweight Composite Materials For Electromagnetic Interference Shielding. Composites Part B, 149, 188-197.
  • Wildgoose, G.G., Banks, C.E. and Compton, R.G. 2006, Metal Nanoparticles and Related Materials Supported on Carbon Nanotubes: Methods and Applications, Small, 2(2) 182-193.
  • Lee, S. H., Kang, D., and Oh, I. K. 2017, Multilayered graphene-carbon nanotube-iron oxide three-dimensional heterostructure for flexible electromagnetic interference shielding film. Carbon, 111, 248-257.
  • Saini, P. and Aror, M. 2012, Microwave Absorption and EMI Shielding Behavior of Nanocomposites Based on Intrinsically Conducting Polymers, Graphene and Carbon Nanotubes. New Polymers for Special Applications, 3, 73-112.
  • Celozzi, S., Araneo, R., Burghignoli, P. and Lovat, G., Electromagnetic shielding: theory and applications. 2023, John Wiley & Sons.
  • Chung D.D., 2000, Materials for Electromagnetic Interference Shielding. Journal of Materials Engineering and Performance, 9(3), 350-354.
  • Abbasi, H., Antunes, M. and Velasco, J. I. 2019, Recent advances in carbon-based polymer nanocomposites for electromagnetic interference shielding. Progress in Materials Science, 103, 319-373.
  • Sezer Hicyilmaz, A. and Celik Bedeloglu, A. 2022, Electromagnetic interference shielding thermoplastic composites reinforced with carbon based hybrid materials: a review. Composite Interfaces, 29(13), 1413-1470.
  • Wu, J., Chung, D. 2002, Increasing The Electromagnetic Interference Shielding Effectiveness of Carbon Fiber Polymer-Matrix Composite by Using Activated Carbon Fibers. Carbon, 40(3), 445-447.
  • Jagatheesan, K., Ramasamy, A., Das, A. and Basu, A. 2012, Electromagnetic shielding behaviour of conductive filler composites and conductive fabrics–A review. Indian Journal of Fibre & Textile Research (IJFTR), 39(3), 329-342.
  • Munalli, D., Dimitrakis, G., Chronopoulos, D., Greedy, S. and Long, A. 2019, Electromagnetic shielding effectiveness of carbon fibre reinforced composites. Composites Part B: Engineering, 173, 106906.
  • Jin, F.L., Lee, S.Y. and Park, S.J. 2013, Polymer Matrices For Carbon Fiber-Reinforced Polymer Composites, Carbon Letters, 14 (2), 76–88.
  • Zhao, Y.H., Zhang, Y.F., Bai S.L. and Yuan X.W. 2016, Carbon Fibre/Graphene Foam/Polymer Composites With Enhanced Mechanical And Thermal Properties, Compos Part B, 94, 102–8.
  • Zhang, L., Bi. S., Liu, M. 2018, Lightweight Electromagnetic Interference Shielding Materials and Their Mechanisms. Electromagnetic Materials and Devices: Intechopen, 10, 1–20.
  • Wanasinghe, D., Aslani F., Ma, G. and Habibi, D. 2020, Review of Polymer Composites with Diverse Nanofillers for Electromagnetic Interference Shielding. Nanomaterials, 10(3), 541.
  • Wang, Z., Sun, K., Jiang, Q., Yin, K., Xie, L., Cao, S. and Fan, R. 2020, Weakly negative permittivity with frequency-independent behavior in flexible thermoplastic polyurethanes/multi-walled carbon nanotubes metacomposites, Materials Today Communications, 24, 101230.
  • Maruthi, N., Faisal, M. and Raghavendra N. 2021, Conducting Polymer Based Composites as Efficient EMI shielding Materials: A Comprehensive Review and Future Prospects. Synthetic Metals 272, 116664.
  • Khatoon, H. and Ahmad, S. 2017, A review on conducting polymer reinforced polyurethane composites. Journal of Industrial and Engineering Chemistry, 53, 1-22.
  • Joshi A, Datar S. 2015, Carbon Nanostructure Composite for Electromagnetic Interference Shielding. Pramana, 84(6), 1099–116.
  • Yamauchi, Y., Doi, N., Kondo, S. I., Sasai, Y., and Kuzuya, M. 2020, Characterization of a novel polymeric prodrug of an antibacterial agent synthesized by mechanochemical solid‐state polymerization. Drug Development Research, 81(7), 867-874.
  • Song, C., Meng, X., Chen, H., Liu, Z., Zhan, Q., Sun, Y. and Dai, Y. 2021, Flexible, graphene-based films with three-dimensional conductive network via simple drop-casting toward electromagnetic interference shielding. Composites Communications, 24, 100632.
  • Weir, C. L. 1975, Introduction to injection molding. Society of Plastics Engineers.
  • Hsu, S. H., Chou, C. W. and Tseng, S. M. 2004, Enhanced thermal and mechanical properties in polyurethane/Au nanocomposites. Macromolecular Materials and Engineering, 289(12), 1096-1101.
  • Yao, Y., Jin, S., Zou, H., Li, L., Ma, X., Lv, G. and Shu, Q. 2021, Polymer-based lightweight materials for electromagnetic interference shielding: A review. Journal of Materials Science, 56(11), 6549-6580.
  • Lu, X, Hasegawa, G., Kanamori, K. and Nakanishi, K. 2020, Hierarchically Porous Monoliths Prepared Via Sol–Gel Process Accompanied by Spinodal Decomposition. Journal of Sol-Gel Science and Technology, 95, 530–550.
  • Lee, B.S, Chun, B.C, Chung, Y.C, Sul, K. I. and Cho J.W. 2001, Structure and Thermomechanical Properties of Polyurethane Block Copolymers with Shape Memory Effect. Macromolecules 34(18), 6431-6437.
  • Yang, X.F, Li, J, Croll, S.G., Tallman, D.E. and Bierwagen G.P. 2003, Degradation of Low Gloss Polyurethane Aircraft Coating Under UV and Prohesion Alternating Exposures. Polymer Degradation and Stability, 80(1), 51-58.
  • Kaşgöz, A. 2017, Elektromanyetik Dalga Kalkanlama Özelliğine Sahip Polimer Kompozitlerin Geliştirilmesi ve Yapı-Performans İlişkilerinin İncelenmesi, Doktora Tezi, İstanbul Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul, Turkey.
  • Mikinka, E. and Siwak, M. 2021, Recent Advances in Electromagnetic Interference Shielding Properties of Carbon-Fibre-Reinforced Polymer Composites-A Topical Review. Journal of Materials Science: Materials in Electronics, 32(20), 24585-24643.
  • Li, L., Chung, D. 1994, Electrical and Mechanical Properties of Electrically Conductive Polyethersulfone Composites. Composites, 25(3), 215-24.
  • Chen, X., Gu, Y., Liang, J., Bai, M., Wang, S and Li, M. and Zhang, Z. 2020, Enhanced Microwave Shielding Effectiveness and Suppressed Reflection of Chopped Carbon Fiber Felt by Electrostatic Flocking of Carbon Fiber. Composites Part A, 139, 106099.
  • Duan, N., Shi, Z., Wang, J., Wang, G. and Zhang, X. 2020, Strong and flexible carbon fiber fabric reinforced thermoplastic polyurethane composites for high‐performance EMI shielding applications, Macromolecular Materials and Engineering, 305(6), 1900829.
  • Yi, D., Jeong, G., Park, S. D., Yoo, M. J., and Yang, H. Surface-modified carbon fiber for enhanced electromagnetic interference shielding performance in thermoplastic polyurethane composites, Functional Composites and Structures, 2022, 4(4), 045008.
  • Hou, C., Li, T., Zhao, T., Zhang, W. and Cheng, Y. 2012, Electromagnetic Wave Absorbing Properties of Carbon Nanotubes Doped Rare Metal/Pure Carbon Nanotubes Double-Layer Polymer Composites, Materials and Design, 33, 413-418.
  • Mo, Z., Yang, R., Lu, D., Yang, L., Hu, Q., Li, H., Zhu, H., Tang Z. and Gui X. 2019, Lightweight, Three-Dimensional Carbon Nanotube@Tio2 Sponge with Enhanced Microwave Absorption Performance, Carbon, 144, 433-439.
  • Shin, B., Mondal, S., Lee, M., Kim, S., Huh, Y. I., and Nah, C. 2021, Flexible thermoplastic polyurethane-carbon nanotube composites for electromagnetic interference shielding and thermal management, Chemical Engineering Journal, 418, 129282.
  • Sobha, A. P., Sreekala, P. S., and Narayanankutty, S. K., 2017, Electrical, thermal, mechanical and electromagnetic interference shielding properties of PANI/FMWCNT/TPU composites. Progress in Organic Coatings, 113, 168-174.
  • Wang, X., Zou, F., Zhao, Y., Li, G., and Liao, X., 2024, Electromagnetic interference shielding composites and the foams with gradient structure obtained by selective distribution of MWCNTs into hard domains of thermoplastic polyurethane. Composites Part A: Applied Science and Manufacturing, 176, 107861.
  • Song, P., Liao, X., Zou, F., Wang, X., Liu, F., Liu, S. and Li, G., 2022, Frequency-adjustable electromagnetic interference shielding performance of sandwich-structured conductive polymer composites by selective foaming and tunable filler dispersion, Composites Communications, 34, 101264.
  • Fu, B., Ren, P., Guo, Z., Du, Y., Jin, Y., Sun, Z. and Ren, F., 2021, Construction of three-dimensional interconnected graphene nanosheet network in thermoplastic polyurethane with highly efficient electromagnetic interference shielding. Composites Part B: Engineering, 215, 108813.
  • Dai, K., Zhao, S.G., Zhai, W., Zheng, G.Q., Liu, C.T., Chen, J. and Shen C., 2013, Tuning of Liquid Sensing Performance of Conductive Carbon Black (CB)/Polypropylene (PP) Composite Utilizing A Segregated Structure, Composites Part A, 55, 11-18.
  • Cui C.H., Yan D.X., Pang H., Jia L.C., Bao Y., Jiang X. and Li Z.M., 2016, Towards Efficient Electromagnetic Interference Shielding Performance for Polyethylene Composites by Structuring Segregated Carbon Black/Graphite Networks, Chinese Journal of Polymer Science, 34(12), 1490-1499.
  • Ren, F., Li, Z., Xu, L., Sun, Z., Ren, P., Yan, D. and Li Z., 2018, Large-Scale Preparation of Segregated PLA/Carbon Nanotube Composite with High Efficient Electromagnetic Interference Shielding and Favourable Mechanical Properties, Composites Part B, 155, 405-413.
  • Wang, T., Yu, W.C., Sun, W.J., Jia, L.C., Gao, J.F., Tang, J.H., Su, H.J., Yan, D.X. and Li, Z.M. 2020, Healable Polyurethane/Carbon Nanotube Composite with Segregated Structure for Efficient Electromagnetic Interference Shielding, Composites Science and Technology, 200, 108446.
  • Ge, C., Wang, G., Li, X., Chai, J., Li, B., Wan, G., Zhao, G. and Wang G. 2020, Large Cyclic Deformability of Microcellular TPU/MWCNT Composite Film with Conductive Stability, and Electromagnetic Interference Shielding and Self-Sleaning Performance. Composites Science and Technology, 197, 108247.
  • Zeng, Z.H., Jin, H., Chen, M.J., Li, W.W., Zhou, L.C., and Zhang Z. 2016, Lightweight and Anisotropic Porous MWCNT/WPU Composites for Ultrahigh Performance Electromagnetic interference Shielding. Advanced Functional Materials, 26, 303-310.
  • Zhang, K., Wang, H., Liu, T., Wang, Z., Wang, L., Fan, P., Chen, F., Zhong, M., Wu, B., Liu, S. and Yang J. 2024, EMI Performance Within the Conductive Composites Foams Engineered with Bimodal and Uniform Cell Structures, The Journal of Supercritical Fluids, 204, 106093.
  • Wang, M., Tang, X., Cai, J., Wu, H., Shen, J. and Guo S, 2021, Construction, Mechanism and Prospective of Conductive Polymer Composites with Multiple İnterfaces for Electromagnetic Interference Shielding: A Review. Carbon, 177, 377–402.
  • Ganguly, S., Bhawal, P., Ravindren R. and Das, N.C. 2018, Polymer Nanocomposites for Electromagnetic Interference Shielding: A Review, Journal of Nanoscience and Nanotechnology, 18(11), 7641–7669.
  • Zhao, B., Wang, R., Li, Y., Ren, Y., Li, X., Guo, X., Zhang, R. and Park, C.B. 2020, Dependence of Electromagnetic Interference Shielding Ability of Conductive Polymer Composite Foams with Hydrophobic Properties on Cellular Structure. Journal of Materials Chemistry C, 8(22), 7401-7410.
  • Fan X., Zhang, G.C., Li, J.T., Shang, Z.Y., Zhang, H.M., Gao, Q., Qin, J. and Shi, X. 2019, Study on Foamability and Electromagnetic Interference Shielding Effectiveness of Supercritical CO2 Foaming Epoxy/Rubber/MWCNTs Composite. Composites Part A: Applied Science and Manufacturing, 121, 64-73.
  • Kuang, T., Chang, L., Chen, F., Sheng, Y., Fu, D. and Peng X. 2016, Facile Preparation of Lightweight High-Strength Biodegradable Polymer/Multi-Walled Carbon Nanotubes Nanocomposite Foams for Electromagnetic Interference Shielding. Carbon, 105, 305-313.
  • Compton, O. C., Jain, B., Dikin, D. A., Abouimrane, A., Amine, K. and Nguyen, S. T. 2011, Chemically active reduced graphene oxide with tunable C/O ratios. ACS nano, 5(6), 4380-4391.
  • Esfahani, A. N., Katbab, A., Taeb, A., Simon, L. and Pope, M. A. 2017, Correlation between mechanical dissipation and improved X-band electromagnetic shielding capabilities of amine functionalized graphene/thermoplastic polyurethane composites. European Polymer Journal, 95, 520-538.
  • Jiang, Q., Liao, X., Yang, J., Wang, G., Chen, J., Tian, C., and Li, G. 2020, A two-step process for the preparation of thermoplastic polyurethane/graphene aerogel composite foams with multi-stage networks for electromagnetic shielding. Composites Communications, 21,100416.
  • Fu, B., Ren, P., Guo, Z., Du, Y., Jin, Y., Sun, Z. and Ren, F. 2021, Construction of three-dimensional interconnected graphene nanosheet network in thermoplastic polyurethane with highly efficient electromagnetic interference shielding. Composites Part B: Engineering, 215, 108813.
  • Bansala, T., Joshi, M., and Mukhopadhyay, S. 2019, Electromagnetic interference shielding behavior of chemically and thermally reduced graphene based multifunctional polyurethane nanocomposites: A comparative study. Journal of Applied Polymer Science, 136 (25), 47666.
  • Wang, Y.N., Cheng, X.D., Song, W.L., Ma, C.J., Bian, X.M. and Chen M.J. 2018, Hydrosensitive Sandwich Structures for Self-Tunable Smart Electromagnetic Shielding. Chemical Engineering Journal, 344, 342-352.
  • He L, Shi Y.D, Wang Q.W, Chen D.Y, Shen J.B, Guo S.Y. 2020, Strategy for Constructing Electromagnetic Interference Shielding and Flame Retarding Synergistic Network In Poly (Butylene Succinate) and Thermoplastic Polyurethane Multilayered Composites. Composites Science and Technology, 199: 108324.
  • Song, P., Liao, X., Zou, F., Wang, X., Liu, F., Liu, S., and Li, G. 2022, Frequency-adjustable electromagnetic interference shielding performance of sandwich-structured conductive polymer composites by selective foaming and tunable filler dispersion. Composites Communications, 34, 101264.
  • Shin, B., Mondal, S., Lee, M., Kim, S., Huh, Y. I., and Nah, C. 2021, Flexible thermoplastic polyurethane-carbon nanotube composites for electromagnetic interference shielding and thermal management. Chemical Engineering Journal, 418, 129282.
  • Hoang, A.S. 2011, Electrical Conductivity and Electromagnetic Interference Shielding Characteristics of Multiwalled Carbon Nanotube Filled Polyurethane Composite Films. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2(2), 025007.
  • Liu, Z.F, Bai, G., Huang, Y., Ma Y.F., Du, F., Li, F., Guo, T. and Chen Y. 2007, Reflection and Absorption Contributions to The Electromagnetic Interference Shielding of Single-Walled Carbon Nanotube/Polyurethane Composites. Carbon, 45, 821-827.
  • Gupta, T.K., Singh, B.P., Teotia, S., Katyal, V., Dhakate, S.R. and Mathur, R.B. 2013, Designing of Multiwalled Carbon Nanotubes Reinforced Polyurethane Composites as Electromagnetic Interference Shielding Materials. Journal of Polymer Research, 20, 1-7.

Elektromanyetik girişim koruması için termoplastik poliüretan kompozitler

Year 2024, , 23 - 36, 30.06.2024
https://doi.org/10.55212/ijaa.1479997

Abstract

Gelişen teknoloji ile birlikte elektronik cihazlara olan ilginin olumsuz bir etkisi elektromanyetik kirlilik olmuştur. Bu yüzden elektromanyetik girişim (EMI) kalkanlama malzemeleri önemli hale gelmiştir. Yüksek yoğunluklu ve düşük korozyon direncine sahip metaller çoğunlukla iletkenlik özellikleri nedeni ile tercih edilse de bu dezavantajlarından dolayı, hafif, yüksek mukavemet ve yüksek korozyon direncine sahip polimerler kompozitlere ilgi artmıştır. Termoplastik kompozitler hafif, kolay işlenebilir ve geri dönüştürülebilir olmaları nedeni ile geniş bir uygulama alanlarında kullanılmaktadır. Elektromanyetik girişim kalkanlama prensibine dayalı olarak, birçok karmaşık faktör, iletken polimer kompozitler için istenen kalkanlama verimini elde etmede etkili bir role sahip olduğu görülmüştür. Bunlar, iletken polimer kompozitlerin iletkenlik özelliklerini büyük ölçüde etkileyen nanopartiküllerin türü, morfolojisi, miktarı ve dağılımını içerir. Yüzey iletken tabakası veya yüksek içerikli metal dolgulu ürünler, esas olarak yansıma yoluyla iyi elektromanyetik girişim koruması sağlar, ancak genellikle yüksek yansımaya yol açarak güçlü ikincil elektromanyetik radyasyona neden olabilirler. Dolayısı ile yansıma tabanlı EMI koruma, yalnızca kalkanlama malzemesiyle girişimi önleyebilir, ancak kayıp elektromanyetik dalgaları etkili bir şekilde kontrol edemez ve ortadan kaldıramaz. Bu nedenle, ikincil elektromanyetik dalga kirliliğini ortadan kaldırmak manyetik nanopartiküller ile karbon esaslı (karbon fiber gibi) hibrit malzemelerinin iletken polimer kompozitlerin absorpsiyon özelliğini desteklemek için ilave edilmesi ile sağlanabilir. Burada, manyetik nanoparçacıklar manyetik kayıp sağlarken karbon nano dolgu maddeleri, soğurma yoluyla elektromanyetik dalgaları daha etkili bir şekilde dağıtabilen dielektrik kaybına katkıda bulunur. Kalkanlama verimini etkileyen bir diğer önemli faktör ise, polimer kompozitlerin yapısal özelliklerinin (yığın veya 3 boyutlu gözenekli yapıya sahip olması) etkisidir.
Poliüretan termoplastikler, esnek, hafif, ekonomik olmaları ve üç boyutta gözenek yapılı şekilde üretilebilmeleri nedeniyle EMI koruması açısından önemlidir. Grafen, karbon siyahı, karbon fiber gibi karbon esaslı malzemelerin polimer matrisine ilave edilmesi ile mekanik, elektriksel iletkenlik ve termal özelliklerinde iyileşme sağlanır. Bu nedenle, karbon esaslı malzemeler, elektronik cihazlarda elektromanyetik girişimi engellemek için potansiyel olarak etkili bir seçenek olarak kabul edilebilir.

Thanks

Bu çalışma Fırat Üniversitesi Fen Bilimleri Enstitüsü Havacılık Bilim ve Teknolojileri yüksek lisans öğrencisi Ümmühan KAYA’nin yüksek lisans tezinden üretilmiştir.

References

  • Viskadourakis, Z., Vasilopoulos, K., Economou. E., Soukoulis, C.M. and Kenanakis, G. 2017. Electromagnetic Shielding Effectiveness of 3D Printed Polymer Composites, Applied Physics A, 123, 1-7.
  • Geetha, S., Satheesh Kumar, K., Rao, C.R., Vijayan, M. and Trivedi D. 2009. Emi Shielding: Methods And Materials-A Review. Journal of Applied Polymer Science, 112(4), 2073-2086.
  • Rea, W.J., Pan, Y., Fenyves, E.J., Sujisawa, I., Suyama, H. And Samadi, N. 1991. Electromagnetic Field Sensitivity. Journal of Bioelectricity, 10(1-2), 241-256.
  • Kılıç B. 2010. Elektromanyetik Test Altyapıları Ve Montaj Yöntemleri, UEKAE Dergisi 2(3), 50-59.
  • Wang, H., Liu, M., Li, S., Zheng, X. and Zhou, X. 2022. A Self-Healing and Flexible Ag@Carbon Fiber/Polyurethane Composite Based on Disulfide Bonds and Application in Electromagnetic İnterference Shielding. Colloids and Surfaces A: Physicochemical and Engineering Aspects 646, 128956.
  • Kumar, K. S., Rengaraj, R., Venkatakrishnan, G. R. and Chandramohan, A. 2021, Polymeric materials for electromagnetic shielding-A review. Materials Today: Proceedings, 47, 4925-4928.
  • Bhattacharjee, Y., Biswas, S. and Bose, S. 2020, Thermoplastic Polymer Composites For EMI Shielding Applications. Processing, Properties and Current Trends, 73-99.
  • Gogoi, J.P. and Borah, M. 2016, Biopolymer Composites For Electromagnetic Interference Shielding. Biopolymer Composites In Electronics, 255-275.
  • Chung, D.D. 2001, Electromagnetic interference Shielding Effectiveness of Carbon Materials. Carbon, 39(2), 279–285.
  • Kumar, R., Sahoo, S., Joanni, E., Singh, R.K., Tan, W.K., Kar, K.K. and Matsuda, A. 2021, Recent Progress on Carbon-Based Composite Materials for Microwave Electromagnetic Interference Shielding. Carbon, 177, 304-331.
  • Singh, A.K., Shishkin, A., Koppel, T. and Gupta, N. A. 2018, Review of Porous Lightweight Composite Materials For Electromagnetic Interference Shielding. Composites Part B, 149, 188-197.
  • Wildgoose, G.G., Banks, C.E. and Compton, R.G. 2006, Metal Nanoparticles and Related Materials Supported on Carbon Nanotubes: Methods and Applications, Small, 2(2) 182-193.
  • Lee, S. H., Kang, D., and Oh, I. K. 2017, Multilayered graphene-carbon nanotube-iron oxide three-dimensional heterostructure for flexible electromagnetic interference shielding film. Carbon, 111, 248-257.
  • Saini, P. and Aror, M. 2012, Microwave Absorption and EMI Shielding Behavior of Nanocomposites Based on Intrinsically Conducting Polymers, Graphene and Carbon Nanotubes. New Polymers for Special Applications, 3, 73-112.
  • Celozzi, S., Araneo, R., Burghignoli, P. and Lovat, G., Electromagnetic shielding: theory and applications. 2023, John Wiley & Sons.
  • Chung D.D., 2000, Materials for Electromagnetic Interference Shielding. Journal of Materials Engineering and Performance, 9(3), 350-354.
  • Abbasi, H., Antunes, M. and Velasco, J. I. 2019, Recent advances in carbon-based polymer nanocomposites for electromagnetic interference shielding. Progress in Materials Science, 103, 319-373.
  • Sezer Hicyilmaz, A. and Celik Bedeloglu, A. 2022, Electromagnetic interference shielding thermoplastic composites reinforced with carbon based hybrid materials: a review. Composite Interfaces, 29(13), 1413-1470.
  • Wu, J., Chung, D. 2002, Increasing The Electromagnetic Interference Shielding Effectiveness of Carbon Fiber Polymer-Matrix Composite by Using Activated Carbon Fibers. Carbon, 40(3), 445-447.
  • Jagatheesan, K., Ramasamy, A., Das, A. and Basu, A. 2012, Electromagnetic shielding behaviour of conductive filler composites and conductive fabrics–A review. Indian Journal of Fibre & Textile Research (IJFTR), 39(3), 329-342.
  • Munalli, D., Dimitrakis, G., Chronopoulos, D., Greedy, S. and Long, A. 2019, Electromagnetic shielding effectiveness of carbon fibre reinforced composites. Composites Part B: Engineering, 173, 106906.
  • Jin, F.L., Lee, S.Y. and Park, S.J. 2013, Polymer Matrices For Carbon Fiber-Reinforced Polymer Composites, Carbon Letters, 14 (2), 76–88.
  • Zhao, Y.H., Zhang, Y.F., Bai S.L. and Yuan X.W. 2016, Carbon Fibre/Graphene Foam/Polymer Composites With Enhanced Mechanical And Thermal Properties, Compos Part B, 94, 102–8.
  • Zhang, L., Bi. S., Liu, M. 2018, Lightweight Electromagnetic Interference Shielding Materials and Their Mechanisms. Electromagnetic Materials and Devices: Intechopen, 10, 1–20.
  • Wanasinghe, D., Aslani F., Ma, G. and Habibi, D. 2020, Review of Polymer Composites with Diverse Nanofillers for Electromagnetic Interference Shielding. Nanomaterials, 10(3), 541.
  • Wang, Z., Sun, K., Jiang, Q., Yin, K., Xie, L., Cao, S. and Fan, R. 2020, Weakly negative permittivity with frequency-independent behavior in flexible thermoplastic polyurethanes/multi-walled carbon nanotubes metacomposites, Materials Today Communications, 24, 101230.
  • Maruthi, N., Faisal, M. and Raghavendra N. 2021, Conducting Polymer Based Composites as Efficient EMI shielding Materials: A Comprehensive Review and Future Prospects. Synthetic Metals 272, 116664.
  • Khatoon, H. and Ahmad, S. 2017, A review on conducting polymer reinforced polyurethane composites. Journal of Industrial and Engineering Chemistry, 53, 1-22.
  • Joshi A, Datar S. 2015, Carbon Nanostructure Composite for Electromagnetic Interference Shielding. Pramana, 84(6), 1099–116.
  • Yamauchi, Y., Doi, N., Kondo, S. I., Sasai, Y., and Kuzuya, M. 2020, Characterization of a novel polymeric prodrug of an antibacterial agent synthesized by mechanochemical solid‐state polymerization. Drug Development Research, 81(7), 867-874.
  • Song, C., Meng, X., Chen, H., Liu, Z., Zhan, Q., Sun, Y. and Dai, Y. 2021, Flexible, graphene-based films with three-dimensional conductive network via simple drop-casting toward electromagnetic interference shielding. Composites Communications, 24, 100632.
  • Weir, C. L. 1975, Introduction to injection molding. Society of Plastics Engineers.
  • Hsu, S. H., Chou, C. W. and Tseng, S. M. 2004, Enhanced thermal and mechanical properties in polyurethane/Au nanocomposites. Macromolecular Materials and Engineering, 289(12), 1096-1101.
  • Yao, Y., Jin, S., Zou, H., Li, L., Ma, X., Lv, G. and Shu, Q. 2021, Polymer-based lightweight materials for electromagnetic interference shielding: A review. Journal of Materials Science, 56(11), 6549-6580.
  • Lu, X, Hasegawa, G., Kanamori, K. and Nakanishi, K. 2020, Hierarchically Porous Monoliths Prepared Via Sol–Gel Process Accompanied by Spinodal Decomposition. Journal of Sol-Gel Science and Technology, 95, 530–550.
  • Lee, B.S, Chun, B.C, Chung, Y.C, Sul, K. I. and Cho J.W. 2001, Structure and Thermomechanical Properties of Polyurethane Block Copolymers with Shape Memory Effect. Macromolecules 34(18), 6431-6437.
  • Yang, X.F, Li, J, Croll, S.G., Tallman, D.E. and Bierwagen G.P. 2003, Degradation of Low Gloss Polyurethane Aircraft Coating Under UV and Prohesion Alternating Exposures. Polymer Degradation and Stability, 80(1), 51-58.
  • Kaşgöz, A. 2017, Elektromanyetik Dalga Kalkanlama Özelliğine Sahip Polimer Kompozitlerin Geliştirilmesi ve Yapı-Performans İlişkilerinin İncelenmesi, Doktora Tezi, İstanbul Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul, Turkey.
  • Mikinka, E. and Siwak, M. 2021, Recent Advances in Electromagnetic Interference Shielding Properties of Carbon-Fibre-Reinforced Polymer Composites-A Topical Review. Journal of Materials Science: Materials in Electronics, 32(20), 24585-24643.
  • Li, L., Chung, D. 1994, Electrical and Mechanical Properties of Electrically Conductive Polyethersulfone Composites. Composites, 25(3), 215-24.
  • Chen, X., Gu, Y., Liang, J., Bai, M., Wang, S and Li, M. and Zhang, Z. 2020, Enhanced Microwave Shielding Effectiveness and Suppressed Reflection of Chopped Carbon Fiber Felt by Electrostatic Flocking of Carbon Fiber. Composites Part A, 139, 106099.
  • Duan, N., Shi, Z., Wang, J., Wang, G. and Zhang, X. 2020, Strong and flexible carbon fiber fabric reinforced thermoplastic polyurethane composites for high‐performance EMI shielding applications, Macromolecular Materials and Engineering, 305(6), 1900829.
  • Yi, D., Jeong, G., Park, S. D., Yoo, M. J., and Yang, H. Surface-modified carbon fiber for enhanced electromagnetic interference shielding performance in thermoplastic polyurethane composites, Functional Composites and Structures, 2022, 4(4), 045008.
  • Hou, C., Li, T., Zhao, T., Zhang, W. and Cheng, Y. 2012, Electromagnetic Wave Absorbing Properties of Carbon Nanotubes Doped Rare Metal/Pure Carbon Nanotubes Double-Layer Polymer Composites, Materials and Design, 33, 413-418.
  • Mo, Z., Yang, R., Lu, D., Yang, L., Hu, Q., Li, H., Zhu, H., Tang Z. and Gui X. 2019, Lightweight, Three-Dimensional Carbon Nanotube@Tio2 Sponge with Enhanced Microwave Absorption Performance, Carbon, 144, 433-439.
  • Shin, B., Mondal, S., Lee, M., Kim, S., Huh, Y. I., and Nah, C. 2021, Flexible thermoplastic polyurethane-carbon nanotube composites for electromagnetic interference shielding and thermal management, Chemical Engineering Journal, 418, 129282.
  • Sobha, A. P., Sreekala, P. S., and Narayanankutty, S. K., 2017, Electrical, thermal, mechanical and electromagnetic interference shielding properties of PANI/FMWCNT/TPU composites. Progress in Organic Coatings, 113, 168-174.
  • Wang, X., Zou, F., Zhao, Y., Li, G., and Liao, X., 2024, Electromagnetic interference shielding composites and the foams with gradient structure obtained by selective distribution of MWCNTs into hard domains of thermoplastic polyurethane. Composites Part A: Applied Science and Manufacturing, 176, 107861.
  • Song, P., Liao, X., Zou, F., Wang, X., Liu, F., Liu, S. and Li, G., 2022, Frequency-adjustable electromagnetic interference shielding performance of sandwich-structured conductive polymer composites by selective foaming and tunable filler dispersion, Composites Communications, 34, 101264.
  • Fu, B., Ren, P., Guo, Z., Du, Y., Jin, Y., Sun, Z. and Ren, F., 2021, Construction of three-dimensional interconnected graphene nanosheet network in thermoplastic polyurethane with highly efficient electromagnetic interference shielding. Composites Part B: Engineering, 215, 108813.
  • Dai, K., Zhao, S.G., Zhai, W., Zheng, G.Q., Liu, C.T., Chen, J. and Shen C., 2013, Tuning of Liquid Sensing Performance of Conductive Carbon Black (CB)/Polypropylene (PP) Composite Utilizing A Segregated Structure, Composites Part A, 55, 11-18.
  • Cui C.H., Yan D.X., Pang H., Jia L.C., Bao Y., Jiang X. and Li Z.M., 2016, Towards Efficient Electromagnetic Interference Shielding Performance for Polyethylene Composites by Structuring Segregated Carbon Black/Graphite Networks, Chinese Journal of Polymer Science, 34(12), 1490-1499.
  • Ren, F., Li, Z., Xu, L., Sun, Z., Ren, P., Yan, D. and Li Z., 2018, Large-Scale Preparation of Segregated PLA/Carbon Nanotube Composite with High Efficient Electromagnetic Interference Shielding and Favourable Mechanical Properties, Composites Part B, 155, 405-413.
  • Wang, T., Yu, W.C., Sun, W.J., Jia, L.C., Gao, J.F., Tang, J.H., Su, H.J., Yan, D.X. and Li, Z.M. 2020, Healable Polyurethane/Carbon Nanotube Composite with Segregated Structure for Efficient Electromagnetic Interference Shielding, Composites Science and Technology, 200, 108446.
  • Ge, C., Wang, G., Li, X., Chai, J., Li, B., Wan, G., Zhao, G. and Wang G. 2020, Large Cyclic Deformability of Microcellular TPU/MWCNT Composite Film with Conductive Stability, and Electromagnetic Interference Shielding and Self-Sleaning Performance. Composites Science and Technology, 197, 108247.
  • Zeng, Z.H., Jin, H., Chen, M.J., Li, W.W., Zhou, L.C., and Zhang Z. 2016, Lightweight and Anisotropic Porous MWCNT/WPU Composites for Ultrahigh Performance Electromagnetic interference Shielding. Advanced Functional Materials, 26, 303-310.
  • Zhang, K., Wang, H., Liu, T., Wang, Z., Wang, L., Fan, P., Chen, F., Zhong, M., Wu, B., Liu, S. and Yang J. 2024, EMI Performance Within the Conductive Composites Foams Engineered with Bimodal and Uniform Cell Structures, The Journal of Supercritical Fluids, 204, 106093.
  • Wang, M., Tang, X., Cai, J., Wu, H., Shen, J. and Guo S, 2021, Construction, Mechanism and Prospective of Conductive Polymer Composites with Multiple İnterfaces for Electromagnetic Interference Shielding: A Review. Carbon, 177, 377–402.
  • Ganguly, S., Bhawal, P., Ravindren R. and Das, N.C. 2018, Polymer Nanocomposites for Electromagnetic Interference Shielding: A Review, Journal of Nanoscience and Nanotechnology, 18(11), 7641–7669.
  • Zhao, B., Wang, R., Li, Y., Ren, Y., Li, X., Guo, X., Zhang, R. and Park, C.B. 2020, Dependence of Electromagnetic Interference Shielding Ability of Conductive Polymer Composite Foams with Hydrophobic Properties on Cellular Structure. Journal of Materials Chemistry C, 8(22), 7401-7410.
  • Fan X., Zhang, G.C., Li, J.T., Shang, Z.Y., Zhang, H.M., Gao, Q., Qin, J. and Shi, X. 2019, Study on Foamability and Electromagnetic Interference Shielding Effectiveness of Supercritical CO2 Foaming Epoxy/Rubber/MWCNTs Composite. Composites Part A: Applied Science and Manufacturing, 121, 64-73.
  • Kuang, T., Chang, L., Chen, F., Sheng, Y., Fu, D. and Peng X. 2016, Facile Preparation of Lightweight High-Strength Biodegradable Polymer/Multi-Walled Carbon Nanotubes Nanocomposite Foams for Electromagnetic Interference Shielding. Carbon, 105, 305-313.
  • Compton, O. C., Jain, B., Dikin, D. A., Abouimrane, A., Amine, K. and Nguyen, S. T. 2011, Chemically active reduced graphene oxide with tunable C/O ratios. ACS nano, 5(6), 4380-4391.
  • Esfahani, A. N., Katbab, A., Taeb, A., Simon, L. and Pope, M. A. 2017, Correlation between mechanical dissipation and improved X-band electromagnetic shielding capabilities of amine functionalized graphene/thermoplastic polyurethane composites. European Polymer Journal, 95, 520-538.
  • Jiang, Q., Liao, X., Yang, J., Wang, G., Chen, J., Tian, C., and Li, G. 2020, A two-step process for the preparation of thermoplastic polyurethane/graphene aerogel composite foams with multi-stage networks for electromagnetic shielding. Composites Communications, 21,100416.
  • Fu, B., Ren, P., Guo, Z., Du, Y., Jin, Y., Sun, Z. and Ren, F. 2021, Construction of three-dimensional interconnected graphene nanosheet network in thermoplastic polyurethane with highly efficient electromagnetic interference shielding. Composites Part B: Engineering, 215, 108813.
  • Bansala, T., Joshi, M., and Mukhopadhyay, S. 2019, Electromagnetic interference shielding behavior of chemically and thermally reduced graphene based multifunctional polyurethane nanocomposites: A comparative study. Journal of Applied Polymer Science, 136 (25), 47666.
  • Wang, Y.N., Cheng, X.D., Song, W.L., Ma, C.J., Bian, X.M. and Chen M.J. 2018, Hydrosensitive Sandwich Structures for Self-Tunable Smart Electromagnetic Shielding. Chemical Engineering Journal, 344, 342-352.
  • He L, Shi Y.D, Wang Q.W, Chen D.Y, Shen J.B, Guo S.Y. 2020, Strategy for Constructing Electromagnetic Interference Shielding and Flame Retarding Synergistic Network In Poly (Butylene Succinate) and Thermoplastic Polyurethane Multilayered Composites. Composites Science and Technology, 199: 108324.
  • Song, P., Liao, X., Zou, F., Wang, X., Liu, F., Liu, S., and Li, G. 2022, Frequency-adjustable electromagnetic interference shielding performance of sandwich-structured conductive polymer composites by selective foaming and tunable filler dispersion. Composites Communications, 34, 101264.
  • Shin, B., Mondal, S., Lee, M., Kim, S., Huh, Y. I., and Nah, C. 2021, Flexible thermoplastic polyurethane-carbon nanotube composites for electromagnetic interference shielding and thermal management. Chemical Engineering Journal, 418, 129282.
  • Hoang, A.S. 2011, Electrical Conductivity and Electromagnetic Interference Shielding Characteristics of Multiwalled Carbon Nanotube Filled Polyurethane Composite Films. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2(2), 025007.
  • Liu, Z.F, Bai, G., Huang, Y., Ma Y.F., Du, F., Li, F., Guo, T. and Chen Y. 2007, Reflection and Absorption Contributions to The Electromagnetic Interference Shielding of Single-Walled Carbon Nanotube/Polyurethane Composites. Carbon, 45, 821-827.
  • Gupta, T.K., Singh, B.P., Teotia, S., Katyal, V., Dhakate, S.R. and Mathur, R.B. 2013, Designing of Multiwalled Carbon Nanotubes Reinforced Polyurethane Composites as Electromagnetic Interference Shielding Materials. Journal of Polymer Research, 20, 1-7.
There are 74 citations in total.

Details

Primary Language Turkish
Subjects Aerospace Materials
Journal Section Reviews
Authors

Ümmühan Kaya 0000-0001-5850-5990

Hülya Kaftelen Odabaşı 0000-0003-1111-5420

Publication Date June 30, 2024
Submission Date May 7, 2024
Acceptance Date June 11, 2024
Published in Issue Year 2024

Cite

APA Kaya, Ü., & Kaftelen Odabaşı, H. (2024). Elektromanyetik girişim koruması için termoplastik poliüretan kompozitler. International Journal of Aeronautics and Astronautics, 5(1), 23-36. https://doi.org/10.55212/ijaa.1479997
AMA Kaya Ü, Kaftelen Odabaşı H. Elektromanyetik girişim koruması için termoplastik poliüretan kompozitler. International Journal of Aeronautics and Astronautics. June 2024;5(1):23-36. doi:10.55212/ijaa.1479997
Chicago Kaya, Ümmühan, and Hülya Kaftelen Odabaşı. “Elektromanyetik girişim Koruması için Termoplastik poliüretan Kompozitler”. International Journal of Aeronautics and Astronautics 5, no. 1 (June 2024): 23-36. https://doi.org/10.55212/ijaa.1479997.
EndNote Kaya Ü, Kaftelen Odabaşı H (June 1, 2024) Elektromanyetik girişim koruması için termoplastik poliüretan kompozitler. International Journal of Aeronautics and Astronautics 5 1 23–36.
IEEE Ü. Kaya and H. Kaftelen Odabaşı, “Elektromanyetik girişim koruması için termoplastik poliüretan kompozitler”, International Journal of Aeronautics and Astronautics, vol. 5, no. 1, pp. 23–36, 2024, doi: 10.55212/ijaa.1479997.
ISNAD Kaya, Ümmühan - Kaftelen Odabaşı, Hülya. “Elektromanyetik girişim Koruması için Termoplastik poliüretan Kompozitler”. International Journal of Aeronautics and Astronautics 5/1 (June 2024), 23-36. https://doi.org/10.55212/ijaa.1479997.
JAMA Kaya Ü, Kaftelen Odabaşı H. Elektromanyetik girişim koruması için termoplastik poliüretan kompozitler. International Journal of Aeronautics and Astronautics. 2024;5:23–36.
MLA Kaya, Ümmühan and Hülya Kaftelen Odabaşı. “Elektromanyetik girişim Koruması için Termoplastik poliüretan Kompozitler”. International Journal of Aeronautics and Astronautics, vol. 5, no. 1, 2024, pp. 23-36, doi:10.55212/ijaa.1479997.
Vancouver Kaya Ü, Kaftelen Odabaşı H. Elektromanyetik girişim koruması için termoplastik poliüretan kompozitler. International Journal of Aeronautics and Astronautics. 2024;5(1):23-36.

International Journal of Aeronautics and Astronautics Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı (CC BY NC) ile lisanslanmıştır.