Research Article
BibTex RIS Cite

Aerodynamic insights from peregrine falcon flight using CFD: Applications in aircraft engineering

Year 2025, Volume: 6 Issue: 1, 1 - 12, 30.06.2025
https://doi.org/10.55212/ijaa.1583570

Abstract

In this study, the aerodynamic characteristics of the peregrine falcon were analyzed using the Computational Fluid Dynamics (CFD) method. The falcon model scaled 1:1, was designed in SolidWorks® for both gliding and diving scenarios. Ansys Fluent® was employed to determine the drag and lift coefficients of the bird model. Numerical analyses were conducted at four different flow rates with Reynolds numbers ranging from 753205 to 3012821. The average drag coefficient (CD) during diving was 0.00933, while the lift coefficient (CL) was 0.00428, resulting in a CD/CL ratio 2.18. The average drag coefficient was for gliding 0.0227, and the lift coefficient was 0.0165, with a reduced CD/CL ratio of 1.38. Additionally, the flow structure around the bird model was examined to identify regions where pressure-induced drag forces were significant. The study discusses potential applications for aircraft and passive flow control components inspired by the peregrine falcon’s superior aerodynamic features.

References

  • Ponitz, B., Schmitz, A., Fischer, D., Bleckmann, H. and Brücker, C. 2014. Diving-flight aerodynamics of a peregrine falcon (falco peregrinus). PLOS One, 9(2), e86506.
  • Kajiwara, S. 2017. Passive variable rear-wing aerodynamics of an open-wheel racing car. Automotive Engine Technology, 2, 107–117.
  • Smith, A. 1974. High-Lift Aerodynamics /37th Wright Brothers Lecture/. In Proceedings of the 6th Aircraft Design, Flight Test and Operations Meeting, Los Angeles, CA, USA, 12–14 August 1974, 12, 1-6. Doi.10.2514/6.1974-939.
  • McBeath, S. 2006. Competition Car Aerodynamics: A Practical Handbook; Haynes Publishing,35-68.
  • Tucker, V.A. 1998. Gliding Flight: Speed and acceleration of ideal falcons during diving and pull out. Journal of Experimental Biology, 201, 403–414.
  • https://evrimagaci.org/gokdogan-falco-peregrinus-5400 (19. September 2024)
  • Hoyo, J., Elliott, A., Sargatal, J. and Collar, NJ. 1999. Handbook of the Birds of the World,5,14-56.
  • Tucker, V.A., and Parrott, G.C. 1970. Bir şahin ve diğer kuşlarda süzülerek uçuşun aerodinamiği. Deneysel Biyoloji Dergisi, 52, 345–367.
  • https://www.nationalgeographic.com/related/ca0777bc-50d1-3df7-9ff5-df8d2be22219/falcons (22 September 2024)
  • Bayındırlı, C., and Çelik, M. 2022. Experimental Optimization of Aerodynamic Drag Coefficient Of A Minibus Model With Non-Smooth Surface Plate Application. Journal of Engineering Studies and Research, 28(4), 23-29., Doi: 10.29081/jesr.v28i3.004
  • Çengel, Y. A. and J. M. Cimbala (2008). Fundamentals of fluid mechanics and applications. Güven Bilimsel 562-599.
  • https://www.caneracarbay.com/2023/04/17/b-2-spiritin-hikayesi/ (20. September 2024)
  • https://www.ansys.com/products/fluids/ansys-fluent
  • Bayındırlı, C., Akansu, Y.E., and Çelik, 2020. Experimental and numerical studies on improvement of drag force of a bus model using different spoiler models. International Journal of Heavy Vehicle Systems, 27(6), 743-776.
  • Yanqing, W., Ding, W., Yuju, W., Yuan. M., Lei. C., and Jiadao, W. 2023. Aerodynamic Drag Reduction on Speed Skating Helmet by Surface Structures. Applied Sciences, 2023, 13, 130, doi.org/10.3390/app1301013

Alaca doğanının uçuş dinamiklerinden CFD ile elde edilen aerodinamik bulgular: Havacılık mühendisliğinde uygulamalar

Year 2025, Volume: 6 Issue: 1, 1 - 12, 30.06.2025
https://doi.org/10.55212/ijaa.1583570

Abstract

Bu çalışmada, alaca doğanın aerodinamik özellikleri Hesaplamalı Akışkanlar Dinamiği (HAD) yöntemi kullanılarak analiz edilmiştir. 1:1 ölçeklendirilmiş doğan modeli, hem süzülme hem de dalış senaryoları için SolidWorks®'te tasarlanmıştır. Kuş modelinin sürükleme ve kaldırma katsayılarını belirlemek için Ansys Fluent® program kullanılmıştır. Sayısal analizler, 753205 ile 3012821 arasında değişen Reynolds sayılarına sahip dört farklı akış hızında gerçekleştirilmiştir. Dalış sırasında ortalama sürüklenme katsayısı (CD) 0,00933 olurken, kaldırma katsayısı (CL) 0,00428 olarak belirlenmiş ve bunun sonucunda CD/CL oranı 2,18 olmuştur. Süzülme sırasında ortalama sürüklenme katsayısı 0,0227 ve kaldırma katsayısı 0,0165 olarak bulunmuş, CD/CL oranı ise 1,38'e düşmüştür. Ayrıca, basınç kaynaklı sürüklenme kuvvetlerinin önemli olduğu bölgeleri belirlemek için kuş modeli etrafındaki akış yapısı incelenmiştir. Çalışma, doğan kuşun üstün aerodinamik özelliklerinden esinlenerek uçak ve pasif akış kontrol bileşenleri için potansiyel uygulamaları tartışmaktadır.

References

  • Ponitz, B., Schmitz, A., Fischer, D., Bleckmann, H. and Brücker, C. 2014. Diving-flight aerodynamics of a peregrine falcon (falco peregrinus). PLOS One, 9(2), e86506.
  • Kajiwara, S. 2017. Passive variable rear-wing aerodynamics of an open-wheel racing car. Automotive Engine Technology, 2, 107–117.
  • Smith, A. 1974. High-Lift Aerodynamics /37th Wright Brothers Lecture/. In Proceedings of the 6th Aircraft Design, Flight Test and Operations Meeting, Los Angeles, CA, USA, 12–14 August 1974, 12, 1-6. Doi.10.2514/6.1974-939.
  • McBeath, S. 2006. Competition Car Aerodynamics: A Practical Handbook; Haynes Publishing,35-68.
  • Tucker, V.A. 1998. Gliding Flight: Speed and acceleration of ideal falcons during diving and pull out. Journal of Experimental Biology, 201, 403–414.
  • https://evrimagaci.org/gokdogan-falco-peregrinus-5400 (19. September 2024)
  • Hoyo, J., Elliott, A., Sargatal, J. and Collar, NJ. 1999. Handbook of the Birds of the World,5,14-56.
  • Tucker, V.A., and Parrott, G.C. 1970. Bir şahin ve diğer kuşlarda süzülerek uçuşun aerodinamiği. Deneysel Biyoloji Dergisi, 52, 345–367.
  • https://www.nationalgeographic.com/related/ca0777bc-50d1-3df7-9ff5-df8d2be22219/falcons (22 September 2024)
  • Bayındırlı, C., and Çelik, M. 2022. Experimental Optimization of Aerodynamic Drag Coefficient Of A Minibus Model With Non-Smooth Surface Plate Application. Journal of Engineering Studies and Research, 28(4), 23-29., Doi: 10.29081/jesr.v28i3.004
  • Çengel, Y. A. and J. M. Cimbala (2008). Fundamentals of fluid mechanics and applications. Güven Bilimsel 562-599.
  • https://www.caneracarbay.com/2023/04/17/b-2-spiritin-hikayesi/ (20. September 2024)
  • https://www.ansys.com/products/fluids/ansys-fluent
  • Bayındırlı, C., Akansu, Y.E., and Çelik, 2020. Experimental and numerical studies on improvement of drag force of a bus model using different spoiler models. International Journal of Heavy Vehicle Systems, 27(6), 743-776.
  • Yanqing, W., Ding, W., Yuju, W., Yuan. M., Lei. C., and Jiadao, W. 2023. Aerodynamic Drag Reduction on Speed Skating Helmet by Surface Structures. Applied Sciences, 2023, 13, 130, doi.org/10.3390/app1301013
There are 15 citations in total.

Details

Primary Language English
Subjects Aircraft Performance and Flight Control Systems
Journal Section Research Articles
Authors

Cihan Bayındırlı 0000-0001-9199-9670

Publication Date June 30, 2025
Submission Date November 12, 2024
Acceptance Date March 3, 2025
Published in Issue Year 2025 Volume: 6 Issue: 1

Cite

APA Bayındırlı, C. (2025). Aerodynamic insights from peregrine falcon flight using CFD: Applications in aircraft engineering. International Journal of Aeronautics and Astronautics, 6(1), 1-12. https://doi.org/10.55212/ijaa.1583570
AMA Bayındırlı C. Aerodynamic insights from peregrine falcon flight using CFD: Applications in aircraft engineering. International Journal of Aeronautics and Astronautics. June 2025;6(1):1-12. doi:10.55212/ijaa.1583570
Chicago Bayındırlı, Cihan. “Aerodynamic Insights from Peregrine Falcon Flight Using CFD: Applications in Aircraft Engineering”. International Journal of Aeronautics and Astronautics 6, no. 1 (June 2025): 1-12. https://doi.org/10.55212/ijaa.1583570.
EndNote Bayındırlı C (June 1, 2025) Aerodynamic insights from peregrine falcon flight using CFD: Applications in aircraft engineering. International Journal of Aeronautics and Astronautics 6 1 1–12.
IEEE C. Bayındırlı, “Aerodynamic insights from peregrine falcon flight using CFD: Applications in aircraft engineering”, International Journal of Aeronautics and Astronautics, vol. 6, no. 1, pp. 1–12, 2025, doi: 10.55212/ijaa.1583570.
ISNAD Bayındırlı, Cihan. “Aerodynamic Insights from Peregrine Falcon Flight Using CFD: Applications in Aircraft Engineering”. International Journal of Aeronautics and Astronautics 6/1 (June 2025), 1-12. https://doi.org/10.55212/ijaa.1583570.
JAMA Bayındırlı C. Aerodynamic insights from peregrine falcon flight using CFD: Applications in aircraft engineering. International Journal of Aeronautics and Astronautics. 2025;6:1–12.
MLA Bayındırlı, Cihan. “Aerodynamic Insights from Peregrine Falcon Flight Using CFD: Applications in Aircraft Engineering”. International Journal of Aeronautics and Astronautics, vol. 6, no. 1, 2025, pp. 1-12, doi:10.55212/ijaa.1583570.
Vancouver Bayındırlı C. Aerodynamic insights from peregrine falcon flight using CFD: Applications in aircraft engineering. International Journal of Aeronautics and Astronautics. 2025;6(1):1-12.

International Journal of Aeronautics and Astronautics is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY NC).