Year 2021, Volume 5 , Issue 1, Pages 113 - 121 2021-06-30

Potential mechanisms of antioxidants derived from horticultural crops against covid-19

Hanifeh HAJİZADEH [1]

Since the end of the 2019, the covid-19 is critically overhanging general health and called as pandemic by World Health Organization. Alternative approaches are very important for its control along with specific drugs for covid-19. So, the main object of the work was to study the function of horticultural crops enriched with antioxidants as a possible alternative opportunity in combating covid-19. Natural antioxidants such as vitamins, bioactive molecules, various polyphenols and some of micro nutrients have promising abilities for being used as antiviral agents. This promising feature is accompanied with its effect on decreasing the levels of ROS in infected cells, inhibiting replication of several strains of different viruses and prevention of proliferation of cancer cells. Results highlighted the anti-viral effects of different antioxidants which can be summarized in three groups; 1) polyphenols with anti-inflammatory and anti-allergy effect 2) vitamins with inhibitory effect on oxidation processes, preserves the epithelium, improves immune function in the elderly and 3) minerals with the formation of antibody and improve immune system. According to these comprehensive results of review, antioxidants propose promising goals for improving oxygenation rates and glutathione levels, decreasing sodium intake and blood pressure, strengthens immune response and prevention of chronic human diseases.
coronavirus, fruits, immunity
  • Anonim. (2021). Coronavirus cases. Aday, S and M. S. Aday. (2020). Impacts of COVID-19 on food supply chain. Food Quality and Safety.
  • Atherton, J. G., C. C. Kratzing and A. Fisher. (1978). "The effect of ascorbic acid on infection of chick-embryo ciliated tracheal organ cultures by coronavirus." Archives of virology, 56 (3), 195-199.
  • Ayseli, Y.I., N. Aytekin, D. Buyukkayhan, I. Aslan and M. T. Ayseli. (2020). Food policy, nutrition and nutraceuticals in the prevention and management of COVID-19: Advice for healthcare professionals. Trends in Food Science and Technology, 105, 186–199.
  • Bakadia, B. M., B. O. O Boni, A. A. Q. Ahmed and G. Yang. (2021). The impact of oxidative stress damage induced by the environmental stressors on COVID-19. Life sciences, 264, 118653.
  • Bellavite, P and A. Donzelli, 2020. Hesperidin and SARS-CoV-2: New Light on the Healthy Function of Citrus Fruits. Antioxidants, 9(8), 742. doi:10.3390/antiox9080742
  • Burns, J., T. Yokota, H. Ashihara, M. E. Lean and A. Crozier. (2002). Plant foods and herbal sources of resveratrol. Journal of Agricultural and Food Chemistry, 50(11), 3337–3340.
  • Carlsen, M. H., B. L. Halvorsen, K. Holte, S. K. Bøhn, S. Dragland, L. Sampson and R. Blomhoff. (2010). The total antioxidant content of more than 3100 foods, beverages, spices, herbs and supplements used worldwide. Nutrition Journal, 9(1). doi:10.1186/1475-2891-9-3
  • Carr, A.C and S. Maggini. (2017).Vitamin C and Immune Function. Nutrients, 9, 1211. doi: 10.3390/nu9111211
  • Cavezzi, A., E. Troiani and S. Corrao. (2020). COVID-19: Hemoglobin, iron, and hypoxia beyond inflammation. A narrative review. Clinics and Practice, 10 (2), 1271.
  • Chandra, R. K, 1999. Nutrition and immunology: from the clinic to cellular biology and back again. Proceedings of the Nutrition Society, 58(3), 681-693. Childs, C.E., P.C. Calder and E.A. Miles. (2019). Diet and immune function. Nutrients, 11, 1933. doi: 10.3390/nu11081933
  • De, L. C and T. De. (2020). Protective Foods to Develop Immu-nity of Individuals against COVID 19. Reaserch today, 2(5), 287-290.
  • Dhama, K., S. Khan, R. Tiwari, S. Sircar, S. Bhat and Y. S. Malik. (2020). Coronavirus disease 2019-COVID-19. Clinical Microbiology Reviews, 33, e00028– 20. doi: 10.1128/CMR.00028-20
  • Di Sotto, A., P. Checconi, I. Celestino, M. Locatelli, S. Carissimi, M. De Angelis, V. Rossi, D. Limongi, C. Toniolo, L. Martinoli, S. Di Giacomo, A.T. Palamara and L. Nencioni. (2018). Antiviral and antioxidant activity of a hydroalcoholic extract from Humulus lupulus L. Oxidative Medicine and Cellular Longevity, 2018/5919237
  • Efsa Panel on Dietetic Products and Nutrition and Allergies [NDA]. (2013). Scientific opinion on dietary reference values for vitamin C. European Food Safety Authority journal, 11, 3418. doi: 10.2903/j.efsa.2013.3418
  • Erol, A. (2020) . High‐dose intravenous vitamin C treatment for COVID‐19.
  • Fadus, M. C., C. Lau, J. Bikhchandani and H. T. Lynch. (2017). Curcumin: An age-old anti-inflammatory and anti-neoplastic agent. Journal of Traditional and Complementary Medicine, 7(3), 339–346.
  • Fawzi, W and G. Msamanga. (2004). Micronutrients and adverse pregnancy outcomes in the context of HIV infection. Nutrition Reviews, 62, 269–75.
  • Fenech, M., I. Amaya, V. Valpuesta and M. A. Botella. (2019). Vitamin C Content in Fruits: Biosynthesis and Regulation. Front. Plant Science, 24
  • Field, C.J., I. R. Johnson and P.D. Schley. (2002). Nutrients and their role in host resistance to infection. Journal of leukocyte biology, 71(1), 16-32.
  • Ghosh, R., A. Chakraborty, A. Biswas and S. Chowdhuri. (2020). Evaluation of green tea polyphenols as novel corona virus (SARS CoV-2) main protease (Mpro) inhibitors – An in silico docking and molecular dynamics simulation study. Journal of Biomolecular Structure and Dynamics, 1–13. 1779818.
  • Gombart, A.F., A. Pierre and S. Maggini. (2020). A review of micronutrients and the immune system-working in harmony to reduce the risk of infection. Nutrients, 12(1), 236. doi: 10.3390/nu12010236
  • Gündeşli, M. A., N. Korkmaz and V. Okatan. (2019). Polyphenol content and antioxidant capacity of berries: A review. International Journal of Agriculture, Forestry and Life Sciences, 3(2), 350–361.
  • Halliwell, B and J.M.C. Gutteridge. (2007). Free Radicals in Biology and Medicine, 4th ed.; Oxford University Press: Oxford, UK.
  • Ho, L. T. F., K. K. H. Chan, V. C. H. Chung and T. H. Leung. (2020). Highlights of traditional Chinese medicine frontline expert advice in the China national guideline for COVID-19. European Journal of Integrative Medicine, 101116. 1016/j.eujim.2020.101116.
  • Katona, P and J. Katona‐Apte. (2008). The Interaction between Nutrition and Infection. Clinical Infectious Diseases, 46(10), 1582–1588. doi:10.1086/587658
  • Khavinson, V. K. H., V. A. Barinov, A. V. Arutyunyan and V. V. Malinin. (2003). Svobodnoradikal’noe okislenie i starenie (Free Radical Oxidation and Senescence), St. Petersburg: Nauka.
  • Koca, I and B. Karadeniz. (2009). Antioxidant properties of blackberry and blueberry fruits grown in the Black Sea Region of Turkey. Scientia Horticulturae, 121(4), 447–450. doi:10.1016/j.scienta.2009.03.015
  • Lee, S.C., S.Y. Wang, C.C. Li and C.T. Liu. (2018). Anti-inflammatory effect of cinnamaldehyde and linalool from the leaf essential oil of Cinnamomum osmophloeum Kanehira in endotoxin-induced mice. Journal of food and drug analysis, 26(1), 211-220.
  • Lee, S. K and A. A. Kader. (2000). Preharvest and postharvest factors influencing vitamin C content of horticultural crops. Postharvest Biology and Technology, 20(3), 207–220. doi:10.1016/s0925-5214(00)00133-2
  • Li, W., N. Maeda and M. A. Beck. (2006). Vitamin C deficiency increases the lung pathology of influenza Virus– Infected gulo−/− mice. The Journal of nutrition, 136(10), 2611-6.
  • Lin, S.C., C. T. Ho, W. H. Chuo, S. Li, T. T. Wang and C.C. Lin. (2017). Effective inhibition of MERS-CoV infection by resveratrol. BMC Infectious Diseases, 17, 144-154.
  • Lv, Q., P. Zhang, P. Quan, M. Cui, T. Liu, Y. Yin and G. Chi. (2020). Quercetin, a pneumolysin inhibitor, protects mice against Streptococcus pneumoniae infection. Microbial Pathogenesis, 140, 103934. 103934.
  • Manoharan, Y., V. Haridas, K. C. Vasanthakumar, S. Muthu, F. F. Thavoorullah and P. Shetty. (2020). Curcumin: A wonder drug as a preventive measure for COVID19 management. Indian Journal of Clinical Biochemistry, 35(3), 373–375.
  • Matsumoto, M., T. Mukai, S. Furukawa and H. Ohori. (2005). Inhibitory effects of epigallocatechin gallate on the propagation of bovine coronavirus in Madin-Darby bovine kidney cells. Animal Science Journal, 76(5), 507–512. 1740-0929.2005.00297.
  • Mcdonough, A. A., L. C. Veiras, C. A. Guevara and D. L. Ralph. (2017). Cardiovascular benefits associated with higher dietary K vs. lower dietary Na evidence from population and mechanistic studies. American Journal of Physiology - Endocrinology and Metabolism, 312 (4): E348 DOI: 10.1152/ajpendo.00453.2016
  • Meydani, S.N., S.N. Han and D. Wu. (2005). Vitamin E and immune response in the aged: molecular mechanisms and clinical implications. Immunological Reviews, 205, 269–84.
  • Mittler, R., S. Vanderauwera, M. Gollery and F. Van-Breusegem. (2004). Reactive oxygen gene network of plants.Trends in Plant Science, 9, 490–498.
  • Muller, O., M. Garenne, B. Kouyate´ and H. Becher. (2003). The association between protein-energy malnutrition, malaria morbidity and all-cause mortality in West African children. Tropical Medicine & International Health, 8, 507–11.
  • Name, J. J., A. C. R. Souza, A. R. Vasconcelos, P. S. Prado and C. P. M. Pereira. (2020). Zinc, Vitamin D and Vitamin C: Perspectives for COVID-19 with a Focus on Physical Tissue Barrier Integrity. Frontiers in nutrition, 7, 295.
  • Naska, A and A. Trichopoulou. (2014). Back to the future: the Mediterranean diet paradigm. Nutrition, Metabolism & Cardiovascular Diseases, 24, 216–219. doi: 10.1016/j.numecd.2013.11.007
  • Okatan, V. (2020) . Antioxidant properties and phenolic profile of the most widely appreciated cultivated berry species: A comparative study. Folia horticulture, 32(1), 79–85.
  • Racchi, M. L. (2013). Antioxidant Defenses in Plants with Attention to Prunus and Citrus spp. Antioxidants, 2, 340-369; doi:10.3390/antiox2040340
  • Raman, R. 2018.
  • Reshi, M.L., Y.C. Su and J. R. Hong. (2014). RNA viruses: ROS-mediated cell death. International Journal of Cell Biology, 467452,
  • Romano, L., F. Bilotta, M. Dauri, S. Macheda, A. Pujia and G. L. De Santis. (2020). Short report - medical nutrition therapy for critically ill patients with COVID-19. European Review for Medical and Pharmacological Sciences, 24, 4035–9.
  • Tsao, R. (2015). Synergistic interactions between antioxidants used in food preservation. In Handbook of antioxidants for food preservation. 335-347. Wood head Publishing.
  • Rusznyak, S.P and A. Szent-Gyorgyi. (1936) . Vitamin P as Flavonoids. Nature, 138, 27.
  • Salehi, B., A. P. Mishra, M. Nigam, B. Sener, M. Kilic and M. Sharifi-Rad, 2018. Resveratrol: A double-edged sword in health benefits. Biomedicines, 6(3), 91.
  • Scrimshaw, N and C. Taylor. (1968). Gordon J. Interactions of nutrition and infection. Monograph series no. 37. Geneva, Switzerland: World Health Organization.
  • Shylaja, M.R and K.V. Peter. (2004). The functional role of herbal spices. In Handbook of Herbs and Spices. 2.
  • Smyth, L.J., M. Cañadas-Garre, R.C. Cappa, A.P. Maxwell and A.J. Mcknight. (2019). Genetic associations between genes in the renin-angiotensin-aldosterone system and renal disease: A systematic review and meta-analysis. British Medical Journal Open, 9, 026777.
  • Soto, M. E., V. Guarner-Lans, E. Soria-Castro, L. Manzano Pech and I. Pérez-Torres. (2020). Is antioxidant therapy a useful complementary measure for Covid-19 treatment: An algorithm for its application. Medicina, 56(8), 386.
  • Stevens, R., D. Page, B. Gouble, C. Garchery, D. Zamir and M. Causse. (2008). Tomato fruit ascorbic acid content is linked with mono dehydro ascorbate reductase activity and tolerance to chilling stress. Plant, Cell and Environment, 31, 1086–1096.
  • Van Breusegem, F., J. Bailey-Serres and R. Mittler. (2008). Unraveling the tapestry of networks involving reactive oxygen species in plants. Plant Physiology, 147, 978–984.
  • Wagner, J., A. Dupont, S. Larson, B. Cash and A. Farooq. (2020). Absolute lymphocyte count is a prognostic marker in Covid‐19: A retrospective cohort review. International Journal of Laboratory Hematology, doi:10.1111/ijlh.13288
  • Wen, C. C., L. F. Shyur, J. T. Jan, P. H. Liang, C. J. Kuo, P. Arulselvan and N. S. Yang. (2011). Traditional chinese medicine herbal extracts of cibotium barometz, gentian scabra, dioscorea batatas, cassia tora, and taxillus chinensis inhibit sars-cov replication. Journal of Traditional and Complementary Medicine, 1(1), 41–50. 10.1016/S2225-4110(16)30055-4.
  • Xian, Y., J. Zhang, Z. Bian, H. Zhou, Z. Zhang, Z. Lin and H. Xu. (2020). Bioactive natural compounds against human coronaviruses: a review and perspective. Acta Pharmaceutica Sinica. 10, 1163–1174.
  • Yang, X., Y. Yu, J. Xu, H. Shu, J. Xia, H. Liu, Y. Wu, L. Zhang, Z. Yu and M. Fang. (2020). Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: A single-centered, retrospective, observational study. The Lancet Respiratory Medicine, 8, 475–481.
  • Yang, Y., Q. Lu, M. Liu, Y. Wang, A. Zhang and N. Jalali. (2020). Epidemiological and clinical features of the 2019 novel coronavirus outbreak in China. Medrxiv, 2020
  • Zhang, J., G. Meng, W. Li, B. Shi, H. Dong, Z. Su and P. Gao. (2020). Relationship of chest CT score with clinical characteristics of 108 patients hospitalized with COVID-19 in Wuhan, China. Respiratory Research, 21(1), 1-11.
Primary Language en
Subjects Horticulture
Journal Section Review Papers

Orcid: 0000-0003-1288-9946
Author: Hanifeh HAJİZADEH (Primary Author)
Institution: mar
Country: Iran


Application Date : March 13, 2021
Acceptance Date : June 8, 2021
Publication Date : June 30, 2021

Bibtex @review { ijafls895725, journal = {International Journal of Agriculture Forestry and Life Sciences}, issn = {}, eissn = {2602-4381}, address = {}, publisher = {Volkan OKATAN}, year = {2021}, volume = {5}, pages = {113 - 121}, doi = {}, title = {Potential mechanisms of antioxidants derived from horticultural crops against covid-19}, key = {cite}, author = {Hajizadeh, Hanifeh} }
APA Hajizadeh, H . (2021). Potential mechanisms of antioxidants derived from horticultural crops against covid-19 . International Journal of Agriculture Forestry and Life Sciences , 5 (1) , 113-121 . Retrieved from
MLA Hajizadeh, H . "Potential mechanisms of antioxidants derived from horticultural crops against covid-19" . International Journal of Agriculture Forestry and Life Sciences 5 (2021 ): 113-121 <>
Chicago Hajizadeh, H . "Potential mechanisms of antioxidants derived from horticultural crops against covid-19". International Journal of Agriculture Forestry and Life Sciences 5 (2021 ): 113-121
RIS TY - JOUR T1 - Potential mechanisms of antioxidants derived from horticultural crops against covid-19 AU - Hanifeh Hajizadeh Y1 - 2021 PY - 2021 N1 - DO - T2 - International Journal of Agriculture Forestry and Life Sciences JF - Journal JO - JOR SP - 113 EP - 121 VL - 5 IS - 1 SN - -2602-4381 M3 - UR - Y2 - 2021 ER -
EndNote %0 International Journal of Agriculture Forestry and Life Sciences Potential mechanisms of antioxidants derived from horticultural crops against covid-19 %A Hanifeh Hajizadeh %T Potential mechanisms of antioxidants derived from horticultural crops against covid-19 %D 2021 %J International Journal of Agriculture Forestry and Life Sciences %P -2602-4381 %V 5 %N 1 %R %U
ISNAD Hajizadeh, Hanifeh . "Potential mechanisms of antioxidants derived from horticultural crops against covid-19". International Journal of Agriculture Forestry and Life Sciences 5 / 1 (June 2021): 113-121 .
AMA Hajizadeh H . Potential mechanisms of antioxidants derived from horticultural crops against covid-19. Int J Agric For Life Sci. 2021; 5(1): 113-121.
Vancouver Hajizadeh H . Potential mechanisms of antioxidants derived from horticultural crops against covid-19. International Journal of Agriculture Forestry and Life Sciences. 2021; 5(1): 113-121.
IEEE H. Hajizadeh , "Potential mechanisms of antioxidants derived from horticultural crops against covid-19", International Journal of Agriculture Forestry and Life Sciences, vol. 5, no. 1, pp. 113-121, Jun. 2021