Research Article
BibTex RIS Cite

The Impact of Nitrogen Fertiliser Usage on the Uptake of Cadmium and Nutrients by Tobacco (Nicotiana tabacum L.) Plants

Year 2025, Volume: 9 Issue: 2, 73 - 82

Abstract

Heavy metal pollution is a significant global issue, primarily caused by industrial and mining activities. Cadmium (Cd) specifically poses a major risk to agriculture and food safety. However, there is hope in the form of phytoremediation, the use of plants to clean up contaminated soil, a cost-effective and environmentally friendly method of treating such soils. By applying nitrogen (N), the biomass of phytoaccumulator plants, such as tobacco, can be improved, allowing them to absorb more heavy metals from the soil. This study aims to investigate the effect of increasing doses of N (0, 100, 200, 400 mg kg-1) and Cd (0, 1.5, 3, 6 mg kg-1) on tobacco Cd uptake and tolerance levels in pot experiments under controlled climate conditions. The chlorophyll concentration of plants increased with increasing N applications. The dry weights of the plant decreased with increasing doses of Cd. The highest dry matter in the tobacco plant was measured at 100 mg kg-1 N with 0 mg Cd kg-1 application (13.0 g). The application of N doses increased the N uptake of the tobacco plant. The highest N concentration (3.07%) was obtained in the tobacco plant at a 400 mg kg-1 N application. The effects of Cd applications on the N concentration of the plant were not statistically significant. The application of increased doses of N and Cd increased the Cd concentration in tobacco plants. The highest Cd concentration (162 mg kg-1) was obtained from an application of 6 mg Cd kg-1 with 400 mg N kg-1. The N applications have increased the uptake of phosphorus (P), potassium (K), magnesium (Mg), and manganese (Mn) in the tobacco plant, while decreasing the uptake of copper (Cu), iron (Fe), and zinc (Zn) (p <0.01). Compared to the control (0 mg Cd kg-1) treatment, Cd applications decreased the uptake of P, K, Mg, Cu, Mn, and Zn, but increased Fe uptake (p < 0.01). However, detailed analyses are necessary concerning the biochemical and physiological response of tobacco plants to increase the Cd uptake with N fertiliser in future studies.

Supporting Institution

Eskişehir Osmangazi University Scientific Research Projects Coordination Unit

Project Number

2016-23026

Thanks

We would like to thank the Eskişehir Osmangazi University Scientific Research Projects Coordination Unit for their support of our research (Project No: 2016-23026). We would also like to thank the anonymous reviewers for their valuable comments.

References

  • Arjenaki F.G., Jabbari R., Morshedi A. (2012). Evaluation of drought stress on relative water content, chlorophyll content, and mineral elements of wheat (Triticum aestivum L.) varieties. Int. J. Agric. Crop. Sci., 4, 726–729.
  • ATSDR (2025). The Agency for Toxic Substances and Disease Registry (ATSDR) 2022 Substance Priority List. https://www.atsdr.cdc.gov/programs/substance-priority-list.html
  • Bai Z., Li D., Zhu L., Tang X., Wang Y., Mao R., Wu J. (2021). Nitrate increases cadmium accumulation in sweet sorghum for improving phytoextraction efficiency rather than ammonium. Front. Plant Sci., 12, 643116. DOI:10.3389/fpls.2021.643116
  • Bailey W.A. (2014). Effect of nitrogen rate on growth, yield, quality, and leaf chemistry of dark tobacco. Tob. Sci., 51(51),13–22. DOI: 10.3381/14-035R.1
  • Balint R., Boajă I. P. (2024). Assisted phytoextraction as a nature‐based solution for the sustainable remediation of metal(loid)‐contaminated soils. Integr. Environ. Assess. Manag., 20(6), 2003–2022.
  • Ballabio C., Jones A., Panagos P. (2024). Cadmium in topsoils of the European Union–an analysis based on LUCAS topsoil database. Sci. Total Environ., 912, 168710.
  • Bouyoucos G. J. (1951). A recalibration of hydrometer for making mechanical analysis of soils. Agron. J., 43, 434–438.
  • Bremner J.M. (1965). Total nitrogen. In: Methods of soil analysis: part 2 chemical and microbiological properties, 9:1149-1178.
  • Ciecko Z., Kalembasa S., Wyszkowski M., Rolka E. (2004a). The effect of soil contamination with cadmium on the phosphorus content in plants. Electronic J. of Polish Agricultural Univ., 7(1), 05. http://www.ejpau.media.pl/volume7/issue1/environment/art-05.html
  • Ciecko Z., Kalembasa S., Wyszkowski M., Rolka E. (2004b). Effect of soil contamination by cadmium on potassium uptake by plants. Polish J. of Env. Studies, 13(3), 333–337.
  • Court W.A., Elliot J.M., Hendel J.G. (1984). Influence of applied nitrogen fertilization on certain lipids, terpenes, and other characteristics of flue-cured tobacco. Tob Sci., 28, 69–72.
  • Chaffei C., Gouia H., Debouba M. Ghorbel M.H. (2008). Differential toxicological response to cadmium stress of bean seedlings grown with NO3– or NH4+ as nitrogen source. Int. J. Bot. 4, 14–23.
  • Chouteau J. Fauconnier D. (1988). Fertilizing for quality and yield tobacco. IPI Bulletin.11, 11–17. https://www.ipipotash.org/uploads/udocs/ipi_bulletin_11_fertilizing_for_high_yield_and_quality_tobacco.pdf
  • Dağhan H. (2004). Phytoextraction of heavy metal from contaminated soils using genetically modified plants. RWTH-Aachen Fakultät für Mathematik, Informatik und Naturwissenschaften, Institut für Umweltforschung (Biology V), Doktorarbeit, Aachen, Germany.
  • Dağhan H. (2007). Fitoremediasyon: bitki kullanılarak kirlenmiş alanların temizlenmesi. GAP V. Tarım Kongresi Bildiri Kitabı, 362–367, 17-19 Ekim, Şanlıurfa.
  • Dağhan H. (2016). Tagetes patula L. bitkisinin fitoremediasyon amaçlı kullanım potansiyelinin su kültürü koşullarında araştırılması. Toprak Su Dergisi, 5(2), 25–31.
  • Dağhan H. (2019). Transgenic tobacco for phytoremediation of metals and metalloids. In: Transgenic plant technology for remediation of toxic metals and metalloids (pp. 279–297). Academic Press.
  • Dağhan H., Köleli N., Uygur V., Arslan M., Önder D., Göksun V., Ağca N. (2012). Kadmiyum ile kirlenmiş toprakların fitoekstraksiyonla arıtımında transgenik tütün bitkisinin kullanımının araştırılması. Toprak Su Dergisi, 1:1–6.
  • Delil A.D., Köleli N., Dağhan H., Bahçeci G. (2020). Recovery of heavy metals from canola (Brassica napus) and soybean (Glycine max) biomasses using electrochemical process. Environ. Technol. Innov., 17, 100559.
  • Diatta J.B. Grzebisz W. (2006). Influence of mineral fertilizer nitrogen forms on heavy metals mobility in two soils. Pol. J. Environ. Stud., 15(2a), 56–62.
  • Dias F.S., Bonsucessoa J.S., Oliveiraa L.C. Santos W.N.L. (2012). Preconcentration and determination of copper in tobacco leaves samples by using a minicolumn of sisal fiber (Agave sisalana) loaded with Alizarin fluorine blue by FAAS. Talanta, 89, 276–279. DOI: 10.1016/j.talanta.2011.12.027
  • Durner J., & Klessig D. F. (1999). Nitric oxide as a signal in plants. Curr. Opin. Plant Biol., 2(5), 369–374.
  • Ehsan S., Ali S., Noureen S., Mahmood K., Farid M., Ishaque W., Mohammad B.S., Rizwan M. (2014). Citric acid assisted phytoremediation of cadmium by Brassica napus L.. Ecotoxicol. Environ. Saf., 106, 164–172.
  • Eriksson J.E. (1990). A field study of the factors influencing Cd levels in soils and in grain of oats and winter wheat. Water Air Soil Pollut., 53, 69–81.
  • Esfahani M., Ali Abbasi H.R., Rabiei B. Kavousi M. (2008). Improvement of nitrogen management in rice paddy fields using chlorophyll meter (SPAD). Paddy Water Environ., 6, 181–188.
  • Gülmezoğlu, N., Dağhan, H. (2022). The potential of nitrogen applied rapeseed (Brassica napus L) in remediation of cadmium polluted soil. Res. J. Biotechnol, 17(7), 16–22.
  • Iskander F.Y., Bauer T.L. Klein, D.E. (1986). Determination of 28 elements in American cigarette tobacco by neutron-activation analysis. Analyst, 111(1), 107–109.
  • Huo W., Zou R., Wang L., Guo W., Zhang D. Fan H. (2018). Effect of different forms of N fertilizers on the hyperaccumulator Solanum nigrum L. and maize in intercropping mode under Cd stress. RSC advances, 8(70), 40210–40218. DOI: 10.1039/c8ra07151a
  • Jackson A.P. Alloway B.J. (1992). The transfer of cadmium from agricultural soils to the human food chain. In: Adriano, D.C. (Ed.), Biogeochemistry of Trace Metals. Lewis Publishers, London. pp. 109–158.
  • Jacobs A., De Brabandere L., Drouet T., Sterckeman T., Noret N. (2018). Phytoextraction of Cd and Zn with Noccaea caerulescens for urban soil remediation: influence of nitrogen fertilization and planting density. Ecol. Eng., 116, 178–187. https://doi.org/10.1016/j.ecoleng.2018.03.007
  • Kacar B. (1995). Bitki ve toprağın kimyasal analizleri, III. toprak analizleri. A.Ü. Ziraat Fak. Eğitim, Araştırma ve Geliştirme Vakfı Yayınları No:3, Ankara, 704 s. (In Turkish).
  • Lindsay W.L. Norvell W. (1978). Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci. Soc. Am. J., 42(3), 421–428.
  • Liu M., Shi M., Gao H., Zheng Y., Yi L. (2023). Nitrogen addition alleviates cadmium toxicity in Eleocarpus glabripetalus seedlings. Forests, 14(6), 1264. https://doi.org/10.3390/f14061264
  • Mitchell L.G., Grant C.A. Racz G.J. (2000). Effect of nitrogen application on concentration of cadmium and nutrient ions in soil solution and in durum wheat. Can. J. Soil Sci., 80, 107–115.
  • Muszynska E., Hanus-Fajerska E. (2015). Why are heavy metal hyperaccumulating plants so amazing? BioTechnologia. Journal of Biotechnology Computational Biology and Bionanotechnology, 96(4).
  • Naeem A., Zafar M., Khalid H., Zia-ur-Rehman M., Ahmad Z., Ayub M.A. Qayyum M.F. (2019). Cadmium-induced imbalance in nutrient and water uptake by plants. In: Cadmium toxicity and tolerance in plants (pp. 299–326). Academic Press.
  • Nelson D.W. Sommers L.E. (1996). Total carbon, organic carbon, and organic matter. In: Methods of soil analysis: Part 3 Chemical methods, 5, 961–1010.
  • Olsen, S.R., C.V. Cole, F.S. Watanabe, L.A. Dean, (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate. US Dept. of Agric. Cric. 939.
  • Özbek H., Kaya Z.,Gök M, Kaptan H. (1993). Toprak bilimi. Ç.Ü. Ziraat Fakültesi Ders Kitabı, Yayın No:16, 73s.
  • Pinkerton A. (1972). Recovery of flue-cured tobacco from magnesium deficiency: changes in leaf magnesium content and effects on leaf quality. Aust. J. Agric. Res., 23(4), 641–649.
  • Polesskaya O.G., Kashirina E.I. Alekhina N.D. (2006). Effect of salt stress on antioxidant system of plants as related to nitrogen nutrition. Russ. J. Plant Physiol. 53, 186–192.
  • Reeves R.D., Baker A.J.M., Jaffré T., Erskine P.D., Echevarria G. Van Der Ent A. (2018). A global database for plants that hyperaccumulate metal and metalloid trace elements. New Phytol, 218: 407–411.
  • Richards L.A. (Ed.). (1954). Diagnosis and improvement of saline and alkali soils (No. 60). US Government Printing Office.
  • Rodríguez-Ortíz J.C., Valdez-Cepeda R.D., Lara-Mireles J.L., Rodríguez-Fuentes H., Vázquez-Alvarado R.E., Magallanes-Quintanar R., García-Hernández J.L. (2006). Soil nitrogen fertilization effects on phytoextraction of cadmium and lead by tobacco (Nicotiana tabacum L.). Bioremediation J., 10(3), 105–114.
  • Ru S.H., Wang J.Q. Su D.C. (2004). Characteristics of Cd uptake and accumulation in two Cd accumulator oilseed rape species. J Environ Sci (China), 16(4):594–8.
  • Rungruang, N., Babel, S., Parkpian, P. (2011). Screening of potential hyperaccumulator for cadmium from contaminated soil. Desalin. Water Treat., 32(1–3), 19–26.
  • Salt D., Price R., Pickering I. Raskin I. (1995). Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant Physiol., 109, 1427–1433.
  • Sarwar N., Saifullah Malhi S.S., Zia M.H., Naeem A., Bibi S., Farid G. (2010). Role of mineral nutrition in minimizing cadmium accumulation by plants. J. Sci. Food Agric., 90(6), 925–937.
  • Shaari N.E.M., Tajudin M.T.F.M., Khandaker M.M., Majrashi A., Alenazi M.M., Abdullahi U.A., Mohd K.S. (2022). Cadmium toxicity symptoms and uptake mechanism in plants: a review. Braz. J. Biol., 84, e252143. https://www.scielo.br/j/bjb/a/Jz3BCcHF7fXNfzg5Prdt4SH/?lang=en
  • USEPA (1995). Microwave-assisted acid digestion of sediments, sludges, soils, and oils, in Test Methods for Evaluating Solid Waste, 3rd Ed., US Environmental Protection Agency, Washington, DC.
  • Wang L., Hou D., Shen Z., Zhu J., Jia X., Ok Y.S., Tack F.M.G., Rinklebe J. (2020). Field trials of phytomining and phytoremediation: A critical review of influencing factors and effects of additives. Crit. Rev. Environ. Sci. Technol., 50(24), 2724–2774. https://doi.org/10.1080/10643389.2019.1705724
  • Wangstrand H., Eriksson J. & Öborn I. (2007). Cadmium concentration in winter wheat as affected by nitrogen fertilization. Eur. J. Agron., 26(3), 209-214.
  • Wood C.W., Tracy P.W., Reeves D.W., Edmisten K.L. (1992). Determination of cotton nitrogen status with a hand-held chlorophyll meter. J. Plant Nutr., 15, 1435–1448.
  • Xie H.L., Jiang R.F., Zhang F.S., McGrath S.P. Zhao F.J. (2009). Effect of nitrogen form on the rhizosphere dynamics and uptake of cadmium and zinc by the hyperaccumulator Thlaspi caerulescens. Plant Soil, 318, 205–215.
  • Yang L., Sung H.Y., Mao Z., Hu T.W. Rao K. (2016). Economic costs attributable to smoking in China: update and an 8-year comparison, 2000–2008. In Economics of Tobacco Control in China: From Policy Research to Practice (pp. 9-28).
  • Yang Y., Xiong J., Tao L., Cao Z., Tang W., Zhang J. Lu Y. (2020). Regulatory mechanisms of nitrogen (N) on cadmium (Cd) uptake and accumulation in plants: a review. Sci. Total Environ.t, 708, 135186.
  • Yi L., Wu M., Yu F., Song Q., Zhao Z., Liao, L. Tong J. (2022). Enhanced cadmium phytoremediation capacity of poplar is associated with increased biomass and Cd accumulation under nitrogen deposition conditions. Ecotoxicol. Environ. Saf., 246, 114154.
  • Zhao D.L., Reddy K.R., Kakani V.G. Reddy V.R. (2005). Nitrogen deficiency effects on plant growth, leaf photosynthesis, and hyperspectral reflectance properties of sorghum. Eur. J. Agron. 22:391–403.
  • Zulfiqar U., Jiang W., Xiukang W., Hussain S., Ahmad M., Maqsood M.F., Ali N., Ishfaq M., Kaleem M., Haider F.U., Farooq N., Naveed M., Kucerik J., Brtnicky M., Mustafa, A. (2022). Cadmium phytotoxicity, tolerance, and advanced remediation approaches in agricultural soils: a comprehensive review. Front. Plant Sci., 13, 773815.
There are 59 citations in total.

Details

Primary Language English
Subjects Soil Sciences and Plant Nutrition (Other)
Journal Section Research Article
Authors

Hatice Dağhan 0000-0002-0150-5882

Nurdilek Gülmezoğlu 0000-0002-5756-526X

Project Number 2016-23026
Early Pub Date November 28, 2025
Publication Date November 28, 2025
Submission Date August 16, 2025
Acceptance Date October 1, 2025
Published in Issue Year 2025 Volume: 9 Issue: 2

Cite

APA Dağhan, H., & Gülmezoğlu, N. (2025). The Impact of Nitrogen Fertiliser Usage on the Uptake of Cadmium and Nutrients by Tobacco (Nicotiana tabacum L.) Plants. International Journal of Agriculture Forestry and Life Sciences, 9(2), 73-82.
AMA Dağhan H, Gülmezoğlu N. The Impact of Nitrogen Fertiliser Usage on the Uptake of Cadmium and Nutrients by Tobacco (Nicotiana tabacum L.) Plants. Int J Agric For Life Sci. November 2025;9(2):73-82.
Chicago Dağhan, Hatice, and Nurdilek Gülmezoğlu. “The Impact of Nitrogen Fertiliser Usage on the Uptake of Cadmium and Nutrients by Tobacco (Nicotiana Tabacum L.) Plants”. International Journal of Agriculture Forestry and Life Sciences 9, no. 2 (November 2025): 73-82.
EndNote Dağhan H, Gülmezoğlu N (November 1, 2025) The Impact of Nitrogen Fertiliser Usage on the Uptake of Cadmium and Nutrients by Tobacco (Nicotiana tabacum L.) Plants. International Journal of Agriculture Forestry and Life Sciences 9 2 73–82.
IEEE H. Dağhan and N. Gülmezoğlu, “The Impact of Nitrogen Fertiliser Usage on the Uptake of Cadmium and Nutrients by Tobacco (Nicotiana tabacum L.) Plants”, Int J Agric For Life Sci, vol. 9, no. 2, pp. 73–82, 2025.
ISNAD Dağhan, Hatice - Gülmezoğlu, Nurdilek. “The Impact of Nitrogen Fertiliser Usage on the Uptake of Cadmium and Nutrients by Tobacco (Nicotiana Tabacum L.) Plants”. International Journal of Agriculture Forestry and Life Sciences 9/2 (November2025), 73-82.
JAMA Dağhan H, Gülmezoğlu N. The Impact of Nitrogen Fertiliser Usage on the Uptake of Cadmium and Nutrients by Tobacco (Nicotiana tabacum L.) Plants. Int J Agric For Life Sci. 2025;9:73–82.
MLA Dağhan, Hatice and Nurdilek Gülmezoğlu. “The Impact of Nitrogen Fertiliser Usage on the Uptake of Cadmium and Nutrients by Tobacco (Nicotiana Tabacum L.) Plants”. International Journal of Agriculture Forestry and Life Sciences, vol. 9, no. 2, 2025, pp. 73-82.
Vancouver Dağhan H, Gülmezoğlu N. The Impact of Nitrogen Fertiliser Usage on the Uptake of Cadmium and Nutrients by Tobacco (Nicotiana tabacum L.) Plants. Int J Agric For Life Sci. 2025;9(2):73-82.

lThe "International Journal of Agriculture, Forestry and Life Sciences" (IJAFLS) content is licensed under a Creative Commons Attribution-NonCommercial (CC BY-NC) 4.0  by-nc.png International License which permits third parties to share and adapt the content for non-commercial purposes by giving the appropriate credit to the original work. Authors retain the copyright of their published work in the International Journal of Agriculture, Environment and Food Sciences.