Research Article
BibTex RIS Cite
Year 2023, , 88 - 93, 30.06.2023
https://doi.org/10.18100/ijamec.1216914

Abstract

Supporting Institution

RECEP TAYYİP ERDOĞAN ÜNİVERSİTESİ, Bilimsel Araştırma Projeleri Koordinasyon Birimi

Project Number

FBA-2022-1316

References

  • [1] S. Murat, “İnsansız Hava Aracı Görüntülerinden Derin Öğrenme Yöntemleriyle Nesne Tanıma,” M. Eng. thesis, Maltepe Institute of Science, İstanbul, Turkey, Feb. 2021.
  • [2] TÜBAV, “Real-Time Vehicle Detection By Using Deep Learning Methods,” 2020.
  • [3] K.E. Kolaylı, A. Bayraktar, G. Durmuş, A. Altıntaş, “Göklerin Hâkimi Teknofest İstanbul Havacılık, Uzay ve Teknoloji Festivali Savaşan İha Yarışma Kritik Tasarım Raporu,” 2021.
  • [4] P. Kumar, S. Batchu, N. Swamy S. and S. R. Kota, "Real-Time Concrete Damage Detection Using Deep Learning for High Rise Structures," in IEEE Access, vol. 9, pp. 112312-112331, 2021, doi: 10.1109/ACCESS.2021.3102647.
  • [5] A. Kaçar, “Üç Dönerkanatlı ve Döner-Rotorlu İnsansız Hava Aracının Tasarımı,” Tech. Rep., 2013.
  • [6] E. Avşar, M. Yalçın, N. Boran, and Z. Ay,. “Döner Kanatlı İnsansız Hava Aracı Tasarımı,” Tech. Rep., 2021.
  • [7] A. Akbulut, E. Ömer, F. Er, and B. Sofu, “Ankara Üniversitesi Bilimsel Araştırma Projesi Sonuç Raporu,” 2016.
  • [8] Ş. Yıldırım , N. Çabuk ve V. Bakırcıoğlu , "Alti Rotorlu Ve Sekiz Rotorlu İnsansiz Hava Araçlarinin Farkli Bozucu Etki Altinda Uçuş Performanslarinin Karşilaştirilmasi", Konya Journal of Engineering Sciences vol. 8, pp. 552-562, 2020, doi:10.36306/konjes.594701
  • [9] Y. T. Wu, Z. Qin, A. Eizad, and S. K. Lyu, “Numerical İnvestigation of the Mechanical Component Design of a Hexacopter Drone for Real-Time Fine Dust Monitoring,” Journal of Mechanical Science and Technology, vol. 35, no. 7, pp. 3101–3111, Jul. 2021, doi: 10.1007/s12206-021-0632-y.
  • [10] A. Demirtaş, “Döner Kanatlı İnsansız Hava Araçları ile Görsel Verilere Dayalı Erken Yangın Algılama Sistemi,” Ankara University, Institute of Science, Ankara, Turkey, 2019.
  • [11] R. Çömert, “Uluslararası Deprem Mühendisliği ve Sismoloji Konferansı,” 2017. Available: http://www.tdmd.org.tr/TR/Genel/4UDMSK/pdf2017/3858.pdf
  • [12] K. Ramesh, B. Priya Dharshini, K. Haridass, S. Deepak Kumar, R. Gokul Raj, and V. Hariprasad, “Sanitization using Hexacopter Autonomous Drone,” in IOP Conference Series: Materials Science and Engineering, Feb. 2021, vol. 1059, no. 1. doi: 10.1088/1757-899X/1059/1/012043. Available: https://iopscience.iop.org/article/10.1088/1757-899X/1059/1/012043/pdf
  • [13] D. Lee, W. Gyu La and H. Kim, "Drone Detection and Identification System using Artificial Intelligence," 2018 International Conference on Information and Communication Technology Convergence (ICTC), 2018, pp. 1131-1133, doi: 10.1109/ICTC.2018.8539442.
  • [14] C.Y. Taş, “Teknofest İstanbul Havacılık, Uzay ve Teknoloji Festivali Savaşan İha Yarışması,” 2019. Accessed: Nov. 03, 2021. [Online]. Available: https://teknofest.org/pdfler/savasan_iha_yar%C4%B1smas%C4%B1_doner_kanat_blackb%C4%B1rd_iha_tak%C4%B1m_raporu.pdf
  • [15] L. Meier, P. Tanskanen, F. Fraundorfer and M. Pollefeys, "PIXHAWK: A system for autonomous flight using onboard computer vision," 2011 IEEE International Conference on Robotics and Automation, 2011, pp. 2992-2997, doi: 10.1109/ICRA.2011.59802

Evaluation of the performance of an unmanned aerial vehicle with artificial intelligence support and Mavlink protocol designed for response to social incidents response

Year 2023, , 88 - 93, 30.06.2023
https://doi.org/10.18100/ijamec.1216914

Abstract

The unmanned aerial vehicle name is TOMHA, which was developed to be used in the response of social incidents, aims to support the operational activities of security forces in response to social incidents, to expand their domination areas, to detect incidents that may disturb social peace in advance and to provide rapid intervention with the new unmanned aerial vehicle technologies developed. The scope of the TOMHA system designed was kept comprehensive compared to other unmanned aerial vehicles and the scope includes intervention to social events, ordering in local administrations, defense, reconnaissance and attack activities in military operations, inspections arranged for public interest, AFAD and service areas, forest fires detection and intervention, and public order operations. This TOMHA is being developed using the Pixhawk flight control card and the jetson nano artificial intelligence card. In addition to these cards, it has the feature of manual or artificial intelligence supported autonomous flight thanks to GPS, telemetry, FPV transceiver module, camera systems and national software to be used. It is controlled through the controller using RC communication channel for manual use. TOMHA has a flight time of 13.6 minutes, a thrust of 4.45G and a speed of 78 km and a mileage of 4993 meters in optimum conditions. The findings obtained by the tests performed with the designed TOMHA prototype show similar results with the literature. Thanks to the national design, TOMHA stands out when it encounters other unmanned aerial vehicles. It is seen that the response of the system to the sudden changes caused by the maneuver movements in the simulation environment is very fast and it follows the changes.

Project Number

FBA-2022-1316

References

  • [1] S. Murat, “İnsansız Hava Aracı Görüntülerinden Derin Öğrenme Yöntemleriyle Nesne Tanıma,” M. Eng. thesis, Maltepe Institute of Science, İstanbul, Turkey, Feb. 2021.
  • [2] TÜBAV, “Real-Time Vehicle Detection By Using Deep Learning Methods,” 2020.
  • [3] K.E. Kolaylı, A. Bayraktar, G. Durmuş, A. Altıntaş, “Göklerin Hâkimi Teknofest İstanbul Havacılık, Uzay ve Teknoloji Festivali Savaşan İha Yarışma Kritik Tasarım Raporu,” 2021.
  • [4] P. Kumar, S. Batchu, N. Swamy S. and S. R. Kota, "Real-Time Concrete Damage Detection Using Deep Learning for High Rise Structures," in IEEE Access, vol. 9, pp. 112312-112331, 2021, doi: 10.1109/ACCESS.2021.3102647.
  • [5] A. Kaçar, “Üç Dönerkanatlı ve Döner-Rotorlu İnsansız Hava Aracının Tasarımı,” Tech. Rep., 2013.
  • [6] E. Avşar, M. Yalçın, N. Boran, and Z. Ay,. “Döner Kanatlı İnsansız Hava Aracı Tasarımı,” Tech. Rep., 2021.
  • [7] A. Akbulut, E. Ömer, F. Er, and B. Sofu, “Ankara Üniversitesi Bilimsel Araştırma Projesi Sonuç Raporu,” 2016.
  • [8] Ş. Yıldırım , N. Çabuk ve V. Bakırcıoğlu , "Alti Rotorlu Ve Sekiz Rotorlu İnsansiz Hava Araçlarinin Farkli Bozucu Etki Altinda Uçuş Performanslarinin Karşilaştirilmasi", Konya Journal of Engineering Sciences vol. 8, pp. 552-562, 2020, doi:10.36306/konjes.594701
  • [9] Y. T. Wu, Z. Qin, A. Eizad, and S. K. Lyu, “Numerical İnvestigation of the Mechanical Component Design of a Hexacopter Drone for Real-Time Fine Dust Monitoring,” Journal of Mechanical Science and Technology, vol. 35, no. 7, pp. 3101–3111, Jul. 2021, doi: 10.1007/s12206-021-0632-y.
  • [10] A. Demirtaş, “Döner Kanatlı İnsansız Hava Araçları ile Görsel Verilere Dayalı Erken Yangın Algılama Sistemi,” Ankara University, Institute of Science, Ankara, Turkey, 2019.
  • [11] R. Çömert, “Uluslararası Deprem Mühendisliği ve Sismoloji Konferansı,” 2017. Available: http://www.tdmd.org.tr/TR/Genel/4UDMSK/pdf2017/3858.pdf
  • [12] K. Ramesh, B. Priya Dharshini, K. Haridass, S. Deepak Kumar, R. Gokul Raj, and V. Hariprasad, “Sanitization using Hexacopter Autonomous Drone,” in IOP Conference Series: Materials Science and Engineering, Feb. 2021, vol. 1059, no. 1. doi: 10.1088/1757-899X/1059/1/012043. Available: https://iopscience.iop.org/article/10.1088/1757-899X/1059/1/012043/pdf
  • [13] D. Lee, W. Gyu La and H. Kim, "Drone Detection and Identification System using Artificial Intelligence," 2018 International Conference on Information and Communication Technology Convergence (ICTC), 2018, pp. 1131-1133, doi: 10.1109/ICTC.2018.8539442.
  • [14] C.Y. Taş, “Teknofest İstanbul Havacılık, Uzay ve Teknoloji Festivali Savaşan İha Yarışması,” 2019. Accessed: Nov. 03, 2021. [Online]. Available: https://teknofest.org/pdfler/savasan_iha_yar%C4%B1smas%C4%B1_doner_kanat_blackb%C4%B1rd_iha_tak%C4%B1m_raporu.pdf
  • [15] L. Meier, P. Tanskanen, F. Fraundorfer and M. Pollefeys, "PIXHAWK: A system for autonomous flight using onboard computer vision," 2011 IEEE International Conference on Robotics and Automation, 2011, pp. 2992-2997, doi: 10.1109/ICRA.2011.59802
There are 15 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Murat Toren 0000-0002-7012-7088

Hakkı Mollahasanoğlu 0000-0001-6233-9198

Mehmet Çepni 0000-0002-8405-9776

Mücahit Kına 0000-0001-6112-9818

Project Number FBA-2022-1316
Early Pub Date June 12, 2023
Publication Date June 30, 2023
Published in Issue Year 2023

Cite

APA Toren, M., Mollahasanoğlu, H., Çepni, M., Kına, M. (2023). Evaluation of the performance of an unmanned aerial vehicle with artificial intelligence support and Mavlink protocol designed for response to social incidents response. International Journal of Applied Mathematics Electronics and Computers, 11(2), 88-93. https://doi.org/10.18100/ijamec.1216914
AMA Toren M, Mollahasanoğlu H, Çepni M, Kına M. Evaluation of the performance of an unmanned aerial vehicle with artificial intelligence support and Mavlink protocol designed for response to social incidents response. International Journal of Applied Mathematics Electronics and Computers. June 2023;11(2):88-93. doi:10.18100/ijamec.1216914
Chicago Toren, Murat, Hakkı Mollahasanoğlu, Mehmet Çepni, and Mücahit Kına. “Evaluation of the Performance of an Unmanned Aerial Vehicle With Artificial Intelligence Support and Mavlink Protocol Designed for Response to Social Incidents Response”. International Journal of Applied Mathematics Electronics and Computers 11, no. 2 (June 2023): 88-93. https://doi.org/10.18100/ijamec.1216914.
EndNote Toren M, Mollahasanoğlu H, Çepni M, Kına M (June 1, 2023) Evaluation of the performance of an unmanned aerial vehicle with artificial intelligence support and Mavlink protocol designed for response to social incidents response. International Journal of Applied Mathematics Electronics and Computers 11 2 88–93.
IEEE M. Toren, H. Mollahasanoğlu, M. Çepni, and M. Kına, “Evaluation of the performance of an unmanned aerial vehicle with artificial intelligence support and Mavlink protocol designed for response to social incidents response”, International Journal of Applied Mathematics Electronics and Computers, vol. 11, no. 2, pp. 88–93, 2023, doi: 10.18100/ijamec.1216914.
ISNAD Toren, Murat et al. “Evaluation of the Performance of an Unmanned Aerial Vehicle With Artificial Intelligence Support and Mavlink Protocol Designed for Response to Social Incidents Response”. International Journal of Applied Mathematics Electronics and Computers 11/2 (June 2023), 88-93. https://doi.org/10.18100/ijamec.1216914.
JAMA Toren M, Mollahasanoğlu H, Çepni M, Kına M. Evaluation of the performance of an unmanned aerial vehicle with artificial intelligence support and Mavlink protocol designed for response to social incidents response. International Journal of Applied Mathematics Electronics and Computers. 2023;11:88–93.
MLA Toren, Murat et al. “Evaluation of the Performance of an Unmanned Aerial Vehicle With Artificial Intelligence Support and Mavlink Protocol Designed for Response to Social Incidents Response”. International Journal of Applied Mathematics Electronics and Computers, vol. 11, no. 2, 2023, pp. 88-93, doi:10.18100/ijamec.1216914.
Vancouver Toren M, Mollahasanoğlu H, Çepni M, Kına M. Evaluation of the performance of an unmanned aerial vehicle with artificial intelligence support and Mavlink protocol designed for response to social incidents response. International Journal of Applied Mathematics Electronics and Computers. 2023;11(2):88-93.