BibTex RIS Cite

Influence of Swirl Number on Semi-Confined Flames

Year 2016, , 65 - 67, 12.07.2016
https://doi.org/10.18100/ijamec.69979

Abstract

Stoichiometric methane air swirling flame has been modelled using RANS equations and a simplified mechanisms of reaction. The reaction zone is strongly affected by the swirl intensity. The higher the swirl number is, the narrower the reaction zone is. The thermodynamic state of reaction products matches well that of equilibrium state at constant pressure.

References

  • Law C. K. Combustion Physics Cambridge. 2006
  • Chung T. J. "Computational Fluid Dynamics" Cambridge. 2006
  • Mira Martinez D., Cluff D.L., Jiang X., Numerical investigation of the burning characteristics of ventilation air methane in a combustion based mitigation system, Fuel Vol. 133 (2014) pp. 182–193 dx.doi.org/10.1016/j.fuel.2014.05.022
  • Chen Z., Ruan S., Swaminathan N. Simulation of turbulent lifted methane jet flames: Effects of air-dilution and transient flame propagation Combustion and Flame Vol. 162 (2015) pp. 703–716 dx.doi.org/10.1016/j.combustflame.2014.09.010
  • Ghasemi E., Soleimani S., Lin C.X. RANS simulation of methane-air burner using local extinction approach within eddy dissipation concept by OpenFOAM International Communications in Heat and Mass Transfer Vol 54 (2014) pp. 96–102 dx.doi.org/10.1016/j.icheatmasstransfer.2014.03.006
  • Parra T., Vuorinen V., Perez R., Szasz R. and Castro F.. Aerodynamic characterization of isothermal swirling flows in combustors. International Journal of Energy and Environmental Engineering (2014) 5:85.
  • Parra T., Perez R., Vuorinen V., Rodriguez M.A., Castro F. Flow features of confined swirling jets International Journal of Automotive Engineering and Technologies Vol. 4, Issue 1, 2015 pp. 12 – 15,
  • Roback R., Johnson B.V.. Mass and momentum turbulent transport experiments with confined swirling coaxial jets, NASA CR-168252, 1983
  • Kuo K. K. Principles of Combustion. Wiley Interscience. 1986
  • http://www.grc.nasa.gov/WWW/CEAWeb/ (visited 3.3.2015)

Original Research Paper

Year 2016, , 65 - 67, 12.07.2016
https://doi.org/10.18100/ijamec.69979

Abstract

References

  • Law C. K. Combustion Physics Cambridge. 2006
  • Chung T. J. "Computational Fluid Dynamics" Cambridge. 2006
  • Mira Martinez D., Cluff D.L., Jiang X., Numerical investigation of the burning characteristics of ventilation air methane in a combustion based mitigation system, Fuel Vol. 133 (2014) pp. 182–193 dx.doi.org/10.1016/j.fuel.2014.05.022
  • Chen Z., Ruan S., Swaminathan N. Simulation of turbulent lifted methane jet flames: Effects of air-dilution and transient flame propagation Combustion and Flame Vol. 162 (2015) pp. 703–716 dx.doi.org/10.1016/j.combustflame.2014.09.010
  • Ghasemi E., Soleimani S., Lin C.X. RANS simulation of methane-air burner using local extinction approach within eddy dissipation concept by OpenFOAM International Communications in Heat and Mass Transfer Vol 54 (2014) pp. 96–102 dx.doi.org/10.1016/j.icheatmasstransfer.2014.03.006
  • Parra T., Vuorinen V., Perez R., Szasz R. and Castro F.. Aerodynamic characterization of isothermal swirling flows in combustors. International Journal of Energy and Environmental Engineering (2014) 5:85.
  • Parra T., Perez R., Vuorinen V., Rodriguez M.A., Castro F. Flow features of confined swirling jets International Journal of Automotive Engineering and Technologies Vol. 4, Issue 1, 2015 pp. 12 – 15,
  • Roback R., Johnson B.V.. Mass and momentum turbulent transport experiments with confined swirling coaxial jets, NASA CR-168252, 1983
  • Kuo K. K. Principles of Combustion. Wiley Interscience. 1986
  • http://www.grc.nasa.gov/WWW/CEAWeb/ (visited 3.3.2015)
There are 10 citations in total.

Details

Journal Section Research Article
Authors

M. Teresa Parra-santos

Ruben Perez This is me

Victor Mendoza This is me

Miguel A. Rodriguez This is me

Francisco Castro This is me

Publication Date July 12, 2016
Published in Issue Year 2016

Cite

APA Parra-santos, M. T., Perez, R., Mendoza, V., Rodriguez, M. A., et al. (2016). Influence of Swirl Number on Semi-Confined Flames. International Journal of Applied Mathematics Electronics and Computers, 4(3), 65-67. https://doi.org/10.18100/ijamec.69979
AMA Parra-santos MT, Perez R, Mendoza V, Rodriguez MA, Castro F. Influence of Swirl Number on Semi-Confined Flames. International Journal of Applied Mathematics Electronics and Computers. August 2016;4(3):65-67. doi:10.18100/ijamec.69979
Chicago Parra-santos, M. Teresa, Ruben Perez, Victor Mendoza, Miguel A. Rodriguez, and Francisco Castro. “Influence of Swirl Number on Semi-Confined Flames”. International Journal of Applied Mathematics Electronics and Computers 4, no. 3 (August 2016): 65-67. https://doi.org/10.18100/ijamec.69979.
EndNote Parra-santos MT, Perez R, Mendoza V, Rodriguez MA, Castro F (August 1, 2016) Influence of Swirl Number on Semi-Confined Flames. International Journal of Applied Mathematics Electronics and Computers 4 3 65–67.
IEEE M. T. Parra-santos, R. Perez, V. Mendoza, M. A. Rodriguez, and F. Castro, “Influence of Swirl Number on Semi-Confined Flames”, International Journal of Applied Mathematics Electronics and Computers, vol. 4, no. 3, pp. 65–67, 2016, doi: 10.18100/ijamec.69979.
ISNAD Parra-santos, M. Teresa et al. “Influence of Swirl Number on Semi-Confined Flames”. International Journal of Applied Mathematics Electronics and Computers 4/3 (August 2016), 65-67. https://doi.org/10.18100/ijamec.69979.
JAMA Parra-santos MT, Perez R, Mendoza V, Rodriguez MA, Castro F. Influence of Swirl Number on Semi-Confined Flames. International Journal of Applied Mathematics Electronics and Computers. 2016;4:65–67.
MLA Parra-santos, M. Teresa et al. “Influence of Swirl Number on Semi-Confined Flames”. International Journal of Applied Mathematics Electronics and Computers, vol. 4, no. 3, 2016, pp. 65-67, doi:10.18100/ijamec.69979.
Vancouver Parra-santos MT, Perez R, Mendoza V, Rodriguez MA, Castro F. Influence of Swirl Number on Semi-Confined Flames. International Journal of Applied Mathematics Electronics and Computers. 2016;4(3):65-7.