BibTex RIS Cite
Year 2016, , 386 - 390, 01.12.2016
https://doi.org/10.18100/ijamec.281481

Abstract

References

  • [1] Chua L. Memristor-the missing circuit element, IEEE Transactions on circuit theory, Vol. 18, Number 5, 1971, pp. 507-519.
  • [2] Chua L. O., and Kang S. M. Memristive devices and systems, Proceedings of the IEEE, Vol. 64, Number 2, 1976, pp. 209-223.
  • [3] Strukov D. B., Snider G. S., Stewart D. R., and Williams R. S. The missing memristor found, Nature, Vol. 453, Number 7191, 2008, pp. 80-83.
  • [4] Kvatinsky S., Friedman E. G., Kolodny A., and Weiser U. C. TEAM: threshold adaptive memristor model, IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 60, Number 1, 2013, pp. 211-221.
  • [5] Pickett M. D., Strukov D. B., Borghetti J. L., Yang J. J., Snider G. S., Stewart D. R., and Williams R. S., Switching dynamics in titanium dioxide memristive devices, Journal of Applied Physics,Vol. 106, Number 7, 2009, pp. 074508.
  • [6] Waser R., Dittmann R., Staikov G., and Szot K. Redox‐based resistive switching memories–nanoionic mechanisms, prospects, and challenges, Advanced materials, Vol. 21, Number 25‐26, 2009, pp. 2632-2663.
  • [7] Valov I., Linn E., Tappertzhofen S., Schmelzer S., Van den Hurk J., Lentz F., and Waser R., Nanobatteries in redox-based resistive switches require extension of memristor theory, Nature communications, Vol. 4, 2013, pp. 1771.
  • [8] Kim G. H., Lee J. H., Ahn Y., Jeon W., Song S. J., Seok J. Y., Yoon J. H., Yoon K. J., Park T. J., and Hwang C. S. 32× 32 crossbar array resistive memory composed of a stacked Schottky diode and unipolar resistive memory, Advanced Functional Materials, Vol. 23, Number 11, 2013, pp. 1440-1449.
  • [9] Volos C. K., Kyprianidis I., Stouboulos I., Tlelo-Cuautle E., and Vaidyanathan S. Memristor: A new concept in synchronization of coupled neuromorphic circuits, J Eng Sci Technol Rev, Vol. 8, Number. 2, 2015, pp. 157-173.
  • [10] Pham V., Volos C. K., Vaidyanathan S., Le T., and Vu V. A memristor-based hyperchaotic system with hidden attractors: dynamics, synchronization and circuital emulating, Journal of Engineering Science and Technology Review, Vol. 8, Number 2, 2015, pp. 205-214.
  • Pan F., Gao S., Chen C., Song C., and Zeng F. Recent progress in resistive random access memories: materials, switching mechanisms, and performance, Materials Science and Engineering: R: Reports, Vol. 83, 2014, pp. 1-59.
  • [12] Wang D., HuZ ., Yu X., and Yu J. A PWL model of memristor and its application example, Proceedings on the International Conference on Communications, Circuits and Systems (ICCCAS2009), Published by IEEE, 23-25 July 2009, USA, California.
  • [13] Vourkas I. and Sirakoulis G. C. A novel design and modeling paradigm for memristor-based crossbar circuits, IEEE Transactions on Nanotechnology, Vol. 11, Number 6, 2012, pp. 1151-1159.
  • [14] Joglekar Y. N. and Wolf S. J. The elusive memristor: properties of basic electrical circuits, European Journal of Physics, Vol. 30, Number 4, 2009, pp. 661.
  • [15] Solak A. and Herdem S. A Piece Wise Linear Memristor Model with Switches, International Journal of Modeling and Optimization, Vol. 6, Number 2, 2016, pp. 124.

Simulink Model for Piece Wise Linear Approximation of Memristor

Year 2016, , 386 - 390, 01.12.2016
https://doi.org/10.18100/ijamec.281481

Abstract

Memristor is a passive circuit element which firstly presented to
science world by Leon Chua in 1971. Chua showed a missing link among four
fundamental circuit variables which generate basic passive circuit elements.
Chua described this missing link between charge and flux, named it as
memristor. Memristor is firstly realized by Stanley Williams and his team from
HP (Hewlett Packard) research laboratories in 2006. In this study, doped and
undoped TiO2 are sandwiched between two Pt layers in nano scale. And
this element demonstrated voltage-current characteristic like memristor.
Physically implementation of memristor is announced with a paper to science
world in 2008. The studies about memristor have quite increased along with this
study. In this paper, a new PWL (Piece Wise Linear) memristor model is obtained
thereby linearizing current-voltage characteristic of memristor. The equivalent
circuit is derived from this model, built in Simulink and results are observed.
The results are compared with other studies in literature and obtained results
have been shared.

References

  • [1] Chua L. Memristor-the missing circuit element, IEEE Transactions on circuit theory, Vol. 18, Number 5, 1971, pp. 507-519.
  • [2] Chua L. O., and Kang S. M. Memristive devices and systems, Proceedings of the IEEE, Vol. 64, Number 2, 1976, pp. 209-223.
  • [3] Strukov D. B., Snider G. S., Stewart D. R., and Williams R. S. The missing memristor found, Nature, Vol. 453, Number 7191, 2008, pp. 80-83.
  • [4] Kvatinsky S., Friedman E. G., Kolodny A., and Weiser U. C. TEAM: threshold adaptive memristor model, IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 60, Number 1, 2013, pp. 211-221.
  • [5] Pickett M. D., Strukov D. B., Borghetti J. L., Yang J. J., Snider G. S., Stewart D. R., and Williams R. S., Switching dynamics in titanium dioxide memristive devices, Journal of Applied Physics,Vol. 106, Number 7, 2009, pp. 074508.
  • [6] Waser R., Dittmann R., Staikov G., and Szot K. Redox‐based resistive switching memories–nanoionic mechanisms, prospects, and challenges, Advanced materials, Vol. 21, Number 25‐26, 2009, pp. 2632-2663.
  • [7] Valov I., Linn E., Tappertzhofen S., Schmelzer S., Van den Hurk J., Lentz F., and Waser R., Nanobatteries in redox-based resistive switches require extension of memristor theory, Nature communications, Vol. 4, 2013, pp. 1771.
  • [8] Kim G. H., Lee J. H., Ahn Y., Jeon W., Song S. J., Seok J. Y., Yoon J. H., Yoon K. J., Park T. J., and Hwang C. S. 32× 32 crossbar array resistive memory composed of a stacked Schottky diode and unipolar resistive memory, Advanced Functional Materials, Vol. 23, Number 11, 2013, pp. 1440-1449.
  • [9] Volos C. K., Kyprianidis I., Stouboulos I., Tlelo-Cuautle E., and Vaidyanathan S. Memristor: A new concept in synchronization of coupled neuromorphic circuits, J Eng Sci Technol Rev, Vol. 8, Number. 2, 2015, pp. 157-173.
  • [10] Pham V., Volos C. K., Vaidyanathan S., Le T., and Vu V. A memristor-based hyperchaotic system with hidden attractors: dynamics, synchronization and circuital emulating, Journal of Engineering Science and Technology Review, Vol. 8, Number 2, 2015, pp. 205-214.
  • Pan F., Gao S., Chen C., Song C., and Zeng F. Recent progress in resistive random access memories: materials, switching mechanisms, and performance, Materials Science and Engineering: R: Reports, Vol. 83, 2014, pp. 1-59.
  • [12] Wang D., HuZ ., Yu X., and Yu J. A PWL model of memristor and its application example, Proceedings on the International Conference on Communications, Circuits and Systems (ICCCAS2009), Published by IEEE, 23-25 July 2009, USA, California.
  • [13] Vourkas I. and Sirakoulis G. C. A novel design and modeling paradigm for memristor-based crossbar circuits, IEEE Transactions on Nanotechnology, Vol. 11, Number 6, 2012, pp. 1151-1159.
  • [14] Joglekar Y. N. and Wolf S. J. The elusive memristor: properties of basic electrical circuits, European Journal of Physics, Vol. 30, Number 4, 2009, pp. 661.
  • [15] Solak A. and Herdem S. A Piece Wise Linear Memristor Model with Switches, International Journal of Modeling and Optimization, Vol. 6, Number 2, 2016, pp. 124.
There are 15 citations in total.

Details

Subjects Engineering
Journal Section Research Article
Authors

Ahmet Solak

Saadetdin Herdem This is me

Publication Date December 1, 2016
Published in Issue Year 2016

Cite

APA Solak, A., & Herdem, S. (2016). Simulink Model for Piece Wise Linear Approximation of Memristor. International Journal of Applied Mathematics Electronics and Computers(Special Issue-1), 386-390. https://doi.org/10.18100/ijamec.281481
AMA Solak A, Herdem S. Simulink Model for Piece Wise Linear Approximation of Memristor. International Journal of Applied Mathematics Electronics and Computers. December 2016;(Special Issue-1):386-390. doi:10.18100/ijamec.281481
Chicago Solak, Ahmet, and Saadetdin Herdem. “Simulink Model for Piece Wise Linear Approximation of Memristor”. International Journal of Applied Mathematics Electronics and Computers, no. Special Issue-1 (December 2016): 386-90. https://doi.org/10.18100/ijamec.281481.
EndNote Solak A, Herdem S (December 1, 2016) Simulink Model for Piece Wise Linear Approximation of Memristor. International Journal of Applied Mathematics Electronics and Computers Special Issue-1 386–390.
IEEE A. Solak and S. Herdem, “Simulink Model for Piece Wise Linear Approximation of Memristor”, International Journal of Applied Mathematics Electronics and Computers, no. Special Issue-1, pp. 386–390, December 2016, doi: 10.18100/ijamec.281481.
ISNAD Solak, Ahmet - Herdem, Saadetdin. “Simulink Model for Piece Wise Linear Approximation of Memristor”. International Journal of Applied Mathematics Electronics and Computers Special Issue-1 (December 2016), 386-390. https://doi.org/10.18100/ijamec.281481.
JAMA Solak A, Herdem S. Simulink Model for Piece Wise Linear Approximation of Memristor. International Journal of Applied Mathematics Electronics and Computers. 2016;:386–390.
MLA Solak, Ahmet and Saadetdin Herdem. “Simulink Model for Piece Wise Linear Approximation of Memristor”. International Journal of Applied Mathematics Electronics and Computers, no. Special Issue-1, 2016, pp. 386-90, doi:10.18100/ijamec.281481.
Vancouver Solak A, Herdem S. Simulink Model for Piece Wise Linear Approximation of Memristor. International Journal of Applied Mathematics Electronics and Computers. 2016(Special Issue-1):386-90.